热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【ELAMN预测】基于粒子群算法优化ELMAN神经网络实现数据回归预测matlab代码

1简介风能,作为一种重要,有潜力,无污染,可再生、可持续的能源,已经成为全球发电最为迅速的能源之一,越来越受到世界各国的青睐。近年来,为缓解能源短缺问题,改善环境,实现经济乃至人

1 简介

风能,作为一种重要,有潜力,无污染,可再生、可持续的能源,已经成为全球发电最为迅速的能源之一,越来越受到世界各国的青睐。近年来,为缓解能源短缺问题,改善环境,实现经济乃至人类的可持续发展,世界各国纷纷大力发展风能资源。然而,在实际操作中,风能固有的波动性和间歇性通常会增加风能入网的难度,致使风电场输出功率不稳定,严重影响输出的电能质量,大大增加了电网安全性和稳定性运行风险,因此,风速预测在风电相关工作中至关重要,准确、可靠的预测结果不仅有利于调度人员事先掌握风电场的功率变化情况,及时制定调度运行计划,提高能量转换效率、降低风险,增加发电量等,同时也有利于风电并网稳定运行和有效消纳,对可能存在影响电网安全稳定运行的风险及时预警,从而避免风电功率随机波动造成电能损耗甚至电网崩溃。近年来,国内外学者进行了大量风速预测相关研究,风速预测水平得到一定程度的提升。单一预测模型虽简单容易实施,但其预测精度往往较低,难以满足风电场发电的需求。相比之下,基于优化算法和数据分解法的混合预测模型对风速预测性能有很大的提升。然而,现有的模型只是使用单目标优化算法,针对预测模型精度的提高,很少关注预测结果稳定性的增强,涉及多目标优化算法的混合预测模型更是少之又少。因此,这些模型往往会降低预测结果的稳定性,对风电场发电以及风电并网的安全性和稳定性带来巨大的挑战。针对如上问题,本文构建出一个基于粒子群算法和Elman神经网络的混合预测模型,本文所提出的混合预测模型不仅可以降低预测误差,提高风速预测精度,增强预测结果的稳定性,同时对风电场发电的完善,发展以及风电并网安全管理也大有裨益。

图片


2 部分代码

%% 基于ELM的工程费用预测
clc
clear all
close all
%% 读取数据
XX=xlsread('工程费用.xlsx');
data=XX';
% % 训练集比例
[W,D]=size(data);
ratio=0.8;
tr=round(ratio*size(data,1));
%% 训练数据
input_train = data(1:tr,1:D-1)';%输入属性特征数据
output_train= data(1:tr,D)';%输出 修改这里
%% 测试数据
input_test= data(tr+1:end,1:D-1)';%输入属性特征数据
output_test =data(tr+1:end,D)';%输出
%% 数据归一化
% 训练集
[inputn,inputps] = mapminmax(input_train);
[outputn,outputps] = mapminmax(output_train);
% 测试集
input1 = mapminmax('apply',input_test,inputps);
output1 = mapminmax('apply',output_test,outputps);
%% ELM网络设置
% 隐含层神经元数量
hiddennum=10;
%极限学习机神经网络的建立
[IW,B,LW,TF,TYPE] = elmtrain(inputn,outputn,hiddennum,'sig',0);%IW输入层和隐含层之间的连接权值,B隐含层神经元的阀值,LW隐含层与输出层的连接权值,TF隐含层神经元的激活函数
%TYPE表示极限学习机的应用类型,0表示回归、拟合,1表示分类,20表示隐含层神经元的个数
%训练输入的预测结果
Tn_sim= elmpredict(inputn,IW,B,LW,TF,TYPE);
%仿真结果反归一化
T_sim = mapminmax('reverse',Tn_sim,outputps);%反归一化的结果
% 评价指标
R1=eva1(output_train,T_sim);
mape1=eva2(output_train,T_sim);
figure
plot(T_sim,'b-*','linewidth',1)
hold on
plot(output_train,'r-.','linewidth',1)
legend('预测值','实际值')
xlabel('训练集')
ylabel('工程费用')
axis tight
string = {'训练集ELM';['(mape = ' num2str(mape1) ' R^2 = ' num2str(R1) ')']};
title(string)
% %测试集
TTn_sim = elmpredict(input1,IW,B,LW,TF,TYPE);
TT_sim = mapminmax('reverse',TTn_sim,outputps);
R2=eva1(output_test,TT_sim);
mape2=eva2(output_test,TT_sim);
figure
plot(TT_sim,'b-*','linewidth',1)
hold on
plot(output_test,'r-.','linewidth',1)
xlabel('测试集')
ylabel('工程费用')
legend('预测值','实际值')
axis tight
string = {'测试集ELM';['(mape = ' num2str(mape2) ' R^2 = ' num2str(R2) ')']};
title(string)

3 仿真结果


4 参考文献

[1]牟家奇. 基于主成分分析-极限学习机的港口国监督选船研究. Diss. 大连海事大学, 2020.



推荐阅读
  • 在晴朗天气条件下,对一种神奇的魔法现象进行了深入分析。该题目为原创,基准时间限制为1秒,空间限制为131072KB,分值20,属于3级难度的算法题。研究发现,这种魔法现象在阳光明媚的环境中表现得尤为显著,进一步探讨了其背后的科学原理和技术实现方法。 ... [详细]
  • 在HDU 1166敌军布阵问题中,通过运用线段树数据结构,可以高效地计算指定区间的敌军数量。该算法不仅能够在限定的时间和内存条件下快速求解,还能够灵活应对动态变化的战场局势,为实时决策提供支持。 ... [详细]
  • 浅层神经网络解析:本文详细探讨了两层神经网络(即一个输入层、一个隐藏层和一个输出层)的结构与工作原理。通过吴恩达教授的课程,读者将深入了解浅层神经网络的基本概念、参数初始化方法以及前向传播和反向传播的具体实现步骤。此外,文章还介绍了如何利用这些基础知识解决实际问题,并提供了丰富的实例和代码示例。 ... [详细]
  • 如何将PHP文件上传至服务器及正确配置服务器地址 ... [详细]
  • 本文深入探讨了 HTML 中的 `margin` 属性,详细解析了其基本特性和应用场景。文章不仅介绍了 `margin` 的基本概念,还重点讨论了垂直外边距合并现象,并分析了 `margin` 在块级元素与内联元素中的不同表现。通过实例和代码示例,帮助读者全面理解 `margin` 的使用技巧和常见问题。 ... [详细]
  • 当前物联网领域十大核心技术解析:涵盖哪些关键技术?
    经过近十年的技术革新,物联网已悄然渗透到日常生活中,对社会产生了深远影响。本文将详细解析当前物联网领域的十大核心关键技术,包括但不限于:1. 军事物联网技术,该技术通过先进的感知设备实现战场环境的实时监测与数据传输,提升作战效能和决策效率。其他关键技术还包括传感器网络、边缘计算、大数据分析等,这些技术共同推动了物联网的快速发展和广泛应用。 ... [详细]
  • Node.js 配置文件管理方法详解与最佳实践
    本文详细介绍了 Node.js 中配置文件管理的方法与最佳实践,涵盖常见的配置文件格式及其优缺点,并提供了多种实用技巧和示例代码,帮助开发者高效地管理和维护项目配置,具有较高的参考价值。 ... [详细]
  • HDU1176:免费馅饼问题的动态规划解法分析
    题目“免费馅饼”通过动态规划方法进行了解析。该问题的时间限制为 Java 2000ms 和其他语言 1000ms,内存限制为 Java 65536K 和其他语言 32768K。本文详细探讨了如何利用动态规划算法高效求解此问题,并对算法的时间复杂度和空间复杂度进行了深入分析。此外,还提供了具体的实现步骤和代码示例,帮助读者更好地理解和应用这一方法。 ... [详细]
  • 如何利用正则表达式(regexp)实现高效的模式匹配?本文探讨了正则表达式在编程中的应用,并分析了一个示例程序中存在的问题。通过具体的代码示例,指出该程序在定义和使用正则表达式时的不当之处,旨在帮助读者更好地理解和应用正则表达式技术。 ... [详细]
  • 通过采用用户数据报协议(UDP),本研究设计并实现了一种高效的文件传输方法。在发送端,系统利用Java编程语言中的相关类库,如`File`和`FileInputStream`,实现了文件的读取与分段处理,确保了数据的快速传输。该方法不仅提高了传输效率,还降低了网络拥塞的风险,适用于大规模文件传输场景。 ... [详细]
  • 射频领域的博士学位在信号处理算法方面具有广阔的职业前景,尤其是在射频技术的应用中。例如,加入华为的射频基站部门,从事数字预失真等关键技术的研发工作。在此过程中,需要注意持续跟踪最新的学术和技术进展,保持对行业动态的敏感性,并不断提升自身的实践能力和创新能力。此外,除了技术层面,还应关注行业的整体发展趋势,以便更好地规划职业生涯。 ... [详细]
  • 本文将深入探讨生成对抗网络(GAN)在计算机视觉领域的应用。作为该领域的经典模型,GAN通过生成器和判别器的对抗训练,能够高效地生成高质量的图像。本文不仅回顾了GAN的基本原理,还将介绍一些最新的进展和技术优化方法,帮助读者全面掌握这一重要工具。 ... [详细]
  • 理工科男女不容错过的神奇资源网站
    十一长假即将结束,你的假期学习计划进展如何?无论你是在家中、思念家乡,还是身处异国他乡,理工科学生都不容错过一些神奇的资源网站。这些网站提供了丰富的学术资料、实验数据和技术文档,能够帮助你在假期中高效学习和提升专业技能。 ... [详细]
  • 超分辨率技术的全球研究进展与应用现状综述
    本文综述了图像超分辨率(Super-Resolution, SR)技术在全球范围内的最新研究进展及其应用现状。超分辨率技术旨在从单幅或多幅低分辨率(Low-Resolution, LR)图像中恢复出高质量的高分辨率(High-Resolution, HR)图像。该技术在遥感、医疗成像、视频处理等多个领域展现出广泛的应用前景。文章详细分析了当前主流的超分辨率算法,包括基于传统方法和深度学习的方法,并探讨了其在实际应用中的优缺点及未来发展方向。 ... [详细]
  • 视觉图像的生成机制与英文术语解析
    近期,Google Brain、牛津大学和清华大学等多家研究机构相继发布了关于多层感知机(MLP)在视觉图像分类中的应用成果。这些研究深入探讨了MLP在视觉任务中的工作机制,并解析了相关技术术语,为理解视觉图像生成提供了新的视角和方法。 ... [详细]
author-avatar
你不知道的人
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有