热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【ELAMN预测】基于粒子群算法优化ELMAN神经网络实现数据回归预测matlab代码

1简介风能,作为一种重要,有潜力,无污染,可再生、可持续的能源,已经成为全球发电最为迅速的能源之一,越来越受到世界各国的青睐。近年来,为缓解能源短缺问题,改善环境,实现经济乃至人

1 简介

风能,作为一种重要,有潜力,无污染,可再生、可持续的能源,已经成为全球发电最为迅速的能源之一,越来越受到世界各国的青睐。近年来,为缓解能源短缺问题,改善环境,实现经济乃至人类的可持续发展,世界各国纷纷大力发展风能资源。然而,在实际操作中,风能固有的波动性和间歇性通常会增加风能入网的难度,致使风电场输出功率不稳定,严重影响输出的电能质量,大大增加了电网安全性和稳定性运行风险,因此,风速预测在风电相关工作中至关重要,准确、可靠的预测结果不仅有利于调度人员事先掌握风电场的功率变化情况,及时制定调度运行计划,提高能量转换效率、降低风险,增加发电量等,同时也有利于风电并网稳定运行和有效消纳,对可能存在影响电网安全稳定运行的风险及时预警,从而避免风电功率随机波动造成电能损耗甚至电网崩溃。近年来,国内外学者进行了大量风速预测相关研究,风速预测水平得到一定程度的提升。单一预测模型虽简单容易实施,但其预测精度往往较低,难以满足风电场发电的需求。相比之下,基于优化算法和数据分解法的混合预测模型对风速预测性能有很大的提升。然而,现有的模型只是使用单目标优化算法,针对预测模型精度的提高,很少关注预测结果稳定性的增强,涉及多目标优化算法的混合预测模型更是少之又少。因此,这些模型往往会降低预测结果的稳定性,对风电场发电以及风电并网的安全性和稳定性带来巨大的挑战。针对如上问题,本文构建出一个基于粒子群算法和Elman神经网络的混合预测模型,本文所提出的混合预测模型不仅可以降低预测误差,提高风速预测精度,增强预测结果的稳定性,同时对风电场发电的完善,发展以及风电并网安全管理也大有裨益。

图片


2 部分代码

%% 基于ELM的工程费用预测
clc
clear all
close all
%% 读取数据
XX=xlsread('工程费用.xlsx');
data=XX';
% % 训练集比例
[W,D]=size(data);
ratio=0.8;
tr=round(ratio*size(data,1));
%% 训练数据
input_train = data(1:tr,1:D-1)';%输入属性特征数据
output_train= data(1:tr,D)';%输出 修改这里
%% 测试数据
input_test= data(tr+1:end,1:D-1)';%输入属性特征数据
output_test =data(tr+1:end,D)';%输出
%% 数据归一化
% 训练集
[inputn,inputps] = mapminmax(input_train);
[outputn,outputps] = mapminmax(output_train);
% 测试集
input1 = mapminmax('apply',input_test,inputps);
output1 = mapminmax('apply',output_test,outputps);
%% ELM网络设置
% 隐含层神经元数量
hiddennum=10;
%极限学习机神经网络的建立
[IW,B,LW,TF,TYPE] = elmtrain(inputn,outputn,hiddennum,'sig',0);%IW输入层和隐含层之间的连接权值,B隐含层神经元的阀值,LW隐含层与输出层的连接权值,TF隐含层神经元的激活函数
%TYPE表示极限学习机的应用类型,0表示回归、拟合,1表示分类,20表示隐含层神经元的个数
%训练输入的预测结果
Tn_sim= elmpredict(inputn,IW,B,LW,TF,TYPE);
%仿真结果反归一化
T_sim = mapminmax('reverse',Tn_sim,outputps);%反归一化的结果
% 评价指标
R1=eva1(output_train,T_sim);
mape1=eva2(output_train,T_sim);
figure
plot(T_sim,'b-*','linewidth',1)
hold on
plot(output_train,'r-.','linewidth',1)
legend('预测值','实际值')
xlabel('训练集')
ylabel('工程费用')
axis tight
string = {'训练集ELM';['(mape = ' num2str(mape1) ' R^2 = ' num2str(R1) ')']};
title(string)
% %测试集
TTn_sim = elmpredict(input1,IW,B,LW,TF,TYPE);
TT_sim = mapminmax('reverse',TTn_sim,outputps);
R2=eva1(output_test,TT_sim);
mape2=eva2(output_test,TT_sim);
figure
plot(TT_sim,'b-*','linewidth',1)
hold on
plot(output_test,'r-.','linewidth',1)
xlabel('测试集')
ylabel('工程费用')
legend('预测值','实际值')
axis tight
string = {'测试集ELM';['(mape = ' num2str(mape2) ' R^2 = ' num2str(R2) ')']};
title(string)

3 仿真结果


4 参考文献

[1]牟家奇. 基于主成分分析-极限学习机的港口国监督选船研究. Diss. 大连海事大学, 2020.



推荐阅读
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文探讨了如何通过Service Locator模式来简化和优化在B/S架构中的服务命名访问,特别是对于需要频繁访问的服务,如JNDI和XMLNS。该模式通过缓存机制减少了重复查找的成本,并提供了对多种服务的统一访问接口。 ... [详细]
  • c语言二元插值,二维线性插值c语言
    c语言二元插值,二维线性插值c语言 ... [详细]
  • 机器学习(ML)三之多层感知机
    深度学习主要关注多层模型,现在以多层感知机(multilayerperceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • 使用TabActivity实现Android顶部选项卡功能
    本文介绍如何通过继承TabActivity来创建Android应用中的顶部选项卡。通过简单的步骤,您可以轻松地添加多个选项卡,并实现基本的界面切换功能。 ... [详细]
  • Windows操作系统提供了Encrypting File System (EFS)作为内置的数据加密工具,特别适用于对NTFS分区上的文件和文件夹进行加密处理。本文将详细介绍如何使用EFS加密文件夹,以及加密过程中的注意事项。 ... [详细]
  • 深入理解:AJAX学习指南
    本文详细探讨了AJAX的基本概念、工作原理及其在现代Web开发中的应用,旨在为初学者提供全面的学习资料。 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 目录预备知识导包构建数据集神经网络结构训练测试精度可视化计算模型精度损失可视化输出网络结构信息训练神经网络定义参数载入数据载入神经网络结构、损失及优化训练及测试损失、精度可视化qu ... [详细]
  • 深入解析国内AEB应用:摄像头和毫米波雷达融合技术的现状与前景
    本文作者程建伟,武汉极目智能技术有限公司CEO,入选武汉市“光谷3551人才计划”。文章详细探讨了国内自动紧急制动(AEB)系统中摄像头与毫米波雷达融合技术的现状及未来前景。通过分析当前技术的应用情况、存在的挑战以及潜在的解决方案,作者指出,随着传感器技术的不断进步和算法优化,AEB系统的性能将大幅提升,为交通安全带来显著改善。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
author-avatar
你不知道的人
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有