热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

端到端图片识别Python实现Tensorflow

1   Abstract验证码(CAPTCHA)的诞生本身是为了自动区分 自然人 和 机器人 的一套公开方法,但是近几年的人工智能技术的发展,传统的字符验证已经形同虚设。所以,大家

1   Abstract

验证码(CAPTCHA)的诞生本身是为了自动区分 自然人 和 机器人 的一套公开方法, 但是近几年的人工智能技术的发展,传统的字符验证已经形同虚设。 所以,大家一方面研究和学习此代码时,另外一方面也要警惕自己的互联网系统的web安全问题。

Keywords: 人工智能,Python,字符验证码,CAPTCHA,识别,tensorflow,CNN,深度学习

2   Introduction

全自动区分计算机和人类的公开图灵测试(英语:Completely Automated Public Turing test to tell Computers and Humans Apart,簡稱CAPTCHA),俗称验证码,是一种区分用户是计算机或人的公共全自动程序 [1]。

得益于基于卷积神经网络CNN的人工智能技术的发展,目前基于主流的深度学习框架的直接开发出 端到端不分割 的识别方式,而且在没有经过太多trick的情况下,已经可以达到95%以上的识别率。

传统的机器学习方法,对于多位字符验证码都是采用的 化整为零 的方法:先分割成最小单位,再分别识别,然后再统一。 卷积神经网络方法,直接采用 端到端不分割 的方法:输入整张图片,输出整个图片的标记结果,具有更强的通用性。

具体的区别如下图:

端到端图片识别 Python实现 Tensorflow

端到端 的识别方法显然更具备优势,因为目前的字符型验证码为了防止被识别,多位字符已经完全融合粘贴在一起了,利用传统的技术基本很难实现分割了。本文重点推荐的就是 端到端 的方法。

3   引用声明

本文代码都参考自此文:

http://blog.topspeedsnail.com/archives/10858

斗大的熊猫--《WTF Daily Blog》

本项目主要解决的问题是对某一模式的字符型验证进行端到端的识别。

输入内容:

端到端图片识别 Python实现 Tensorflow

模型预测结果:

端到端图片识别 Python实现 Tensorflow

4   本文工作

  • 解释了原作者代码注释中提到的关于sigmoid选型的困惑问题并应用到代码中
  • 将原作者的代码进行模块工程化,成为整体项目,方便研究的同学直接进行模式套用

原作者代码中:

端到端图片识别 Python实现 Tensorflow
def train_crack_captcha_cnn():
    output = crack_captcha_cnn()
    # loss
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
        # 最后一层用来分类的softmax和sigmoid有什么不同?
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    ……
端到端图片识别 Python实现 Tensorflow

作者在代码的注释中出提出了这样的疑问:

对 softmax 和 sigmoid 的使用方式有疑问。

然后在文章下面读者评论区也都提到了此问题,在此进行整体解释一下。

原文中CNN的输出的维度是 MAX_CAPTCHA*CHAR_SET_LEN ,其实这些维度并不都是完全独立分布的, 但是使用sigmoid loss也是仍然可以的,相当于先用sigmoid进行了一次归一化,然后再将各个维度的值向目标值进行 回归 , 最后loss越小,两个向量的对应的值也越接近。 其实sigmoid是可以看成是一个多分类的问题,在这个例子上也能起到比较好的收敛效果

当然,关于分类的问题,看所有的机器学习框架里面,都是建议使用softmax进行最后的归一化操作,这其实相当于是一种 马太效应 : 让可能性大的分类的值变得更大,让可能性小的分量值变得更小。但是这有个前提,就是参与到softmax运算的一组数据,必须是 相关联 的, 所以如果要使用 softmax_cross_entropy_with_logits ,只需要将网络进行简单修改即可。把输出的维度做成二维[MAX_CAPTCHA, CHAR_SET_LEN], 然后使用softmax loss。

output = crack_captcha_cnn()#36×4
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])  # 36行,4列
label = tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN])

最后使用GPU训练的实验结果对比:

  • sigmoid方式。训练6000个step就能达到95%的准确率。
  • softmax方式。训练8千个step,达到90%的准确率;训练8万个step,达到94.7%(跑了大半天)

使用tensorboard对accuracy进行监控:

sigmoid-6千个step:

端到端图片识别 Python实现 Tensorflow

softmax-8千个step:

端到端图片识别 Python实现 Tensorflow

softmax-8万个step:

端到端图片识别 Python实现 Tensorflow

整体来说,在这个例子里面,好像 sigmoid的收敛速度快些,当然这个可能是本项目里面的外界因素有利于sigmoid吧,至于具体原因,等后续再进行研究和解释吧,当然有可能根本解释不了,因为对于CNN,目前主流的意见都是:,反正效果就是好,但是不知道为啥, 科幻得近于玄幻 的一种技术。

github源码地址:

https://github.com/zhengwh/captcha-tensorflow

项目文件介绍:

  • cfg.py 配置信息文件
  • cnn_sys.py CNN网络结构
  • data_iter.py 可迭代的数据集
  • gen_captcha.py 验证码生成器,直接使用程序生成带标记的数据
  • predict.py 加载训练好的模型,然后对输入的图片进行预测
  • train.py 对模型进行训练
  • utils.py 一些公共使用的方法

5   小结

本文主要只写原作者没有提到的内容,想了解原文的,可以直接去原作者页面。

6   Reference

[1] wiki-CAPTCHA https://en.wikipedia.org/wiki/CAPTCHA

推荐阅读
  • 本文介绍了如何使用 Google Colab 的免费 GPU 资源进行深度学习应用开发。Google Colab 是一个无需配置即可使用的云端 Jupyter 笔记本环境,支持多种深度学习框架,并且提供免费的 GPU 计算资源。 ... [详细]
  • 小程序的授权和登陆
    小程序的授权和登陆 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 2020年9月15日,Oracle正式发布了最新的JDK 15版本。本次更新带来了许多新特性,包括隐藏类、EdDSA签名算法、模式匹配、记录类、封闭类和文本块等。 ... [详细]
  • MySQL 函数调用性能优化策略与实践
    MySQL函数调用的性能优化是提升数据库整体效率的关键。本文探讨了MySQL中函数的确定性和不确定性分类,以及如何通过优化这些函数调用来提高查询性能。确定性函数在给定相同输入时始终返回相同的结果,而非确定性函数则可能因环境或时间等因素而返回不同的结果。文章详细介绍了识别和优化非确定性函数的方法,以减少对数据库性能的影响,并提供了实际应用中的案例分析。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 本文探讨了利用Python编程语言开发自动化脚本来实现文件的全量和增量备份方法。通过详细分析不同备份策略的特点,文章介绍了如何使用Python标准库中的os和shutil模块来高效地管理和执行备份任务。此外,还提供了示例代码和最佳实践,帮助读者快速掌握自动化备份技术,确保数据的安全性和完整性。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • 在Windows命令行中,通过Conda工具可以高效地管理和操作虚拟环境。具体步骤包括:1. 列出现有虚拟环境:`conda env list`;2. 创建新虚拟环境:`conda create --name 环境名`;3. 删除虚拟环境:`conda env remove --name 环境名`。这些命令不仅简化了环境管理流程,还提高了开发效率。此外,Conda还支持环境文件导出和导入,方便在不同机器间迁移配置。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 本文详细介绍了在Windows操作系统上使用Python 3.8.5编译支持CUDA 11和cuDNN 8.0.2的TensorFlow 2.3的步骤。文章不仅提供了详细的编译指南,还分享了编译后的文件下载链接,方便用户快速获取所需资源。此外,文中还涵盖了常见的编译问题及其解决方案,确保用户能够顺利进行编译和安装。 ... [详细]
  • 利用TensorFlow.js在网页浏览器中实现高效的人脸识别JavaScript接口
    作者|VincentMühle编译|姗姗出品|人工智能头条(公众号ID:AI_Thinker)【导读】随着深度学习方法的应用,浏览器调用人脸识别技术已经得到了更广泛的应用与提升。在 ... [详细]
  • TensorFlow基础知识深化讲解
    批标准化批标准化(batchnormalization,BN)是为了克服神经网络层数加深导致难以训练而诞生的。深度神经网络随着深度加深,收 ... [详细]
author-avatar
手机用户2502909917
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有