热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

DeepLearningL教程(矢量化编程实现)(二)

(二)逻辑回归的向量化实现样例我们想用批量梯度上升法对logistic回归分析模型进行训练,其模型如下:让我们遵从公开课程视频与CS229教学讲

(二)逻辑回归的向量化实现样例

我们想用批量梯度上升法对logistic回归分析模型进行训练,其模型如下:

\begin{align}h_\theta(x) = \frac{1}{1+\exp(-\theta^Tx)},\end{align}

让我们遵从公开课程视频与CS229教学讲义的符号规范,设 \textstyle x_0=1,于是x\in R^{n+1} ,\theta \in R^{n+1}, \textstyle \theta_0 为截距。假设我们有m个训练样本{(x^\left( 1\right),y^\left( 1\right) ) ,...,(x^\left( m\right) ,y^\left( m\right) )},而批量梯度上升法的更新法则是:\theta :=\theta +\alpha \nabla _{\theta }l\left( \theta \right) ,这里的 l\left( \theta \right) 是对数似然函数,\nabla _{\theta }l\left( \theta \right) 是其导函数。

[注:下文的符号规范与<公开课程视频>或<教学讲义CS229:机器学习>中的相同,详细内容可以参见公开课程视频或教学讲义#1http://cs229.stanford.edu/]

于是,我们需要如下计算梯度:

\begin{align}\nabla_\theta \ell(\theta) = \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)}) \right) x^{(i)}_j.\end{align}

我们用Matlab/Octave风格变量x表示输入数据构成的样本矩阵,x(:,i)代表第 i个训练样本x^{\left( i\right) },x(j,i)就代表x_{j}^{\left( i\right) }(译者注:第i个训练样本向量的第j个元素)。同样,用Matlab/Octave风格变量y表示由训练样本集合的全体类别标号所构成的行向量,则该向量的第i个元素y(i)就代表上式中的y^{\left(i\right) }\in \left\{ 0,1\right\}。(注意这里跟公开课程视频及CS229的符号规范不同,矩阵x按列而不是按行存放输入训练样本,同样,y\in R^{1\times m}是行向量而不是列向量。)


以下是梯度运算代码的一种实现,非常恐怖,速度极慢:

% 代码1
grad = zeros(n+1,1);
for i=1:m,
  h = sigmoid(theta'*x(:,i));
  temp = y(i) - h; 
  for j=1:n+1,
    grad(j) = grad(j) + temp * x(j,i); 
  end;
end;


嵌套的for循环语句使这段代码的运行非常缓慢。以下是更典型的实现方式,它对算法进行部分向量化,带来更优的执行效率:

% 代码2
grad = zeros(n+1,1);
for i=1:m,
  grad = grad + (y(i) - sigmoid(theta'*x(:,i)))* x(:,i);
end;


但是,或许可以向量化得更彻底些。如果去除for循环,我们就可以显著地改善代码执行效率。特别的,假定b是一个列向量,A是一个矩阵,我们用以下两种方式来计算A*b:

% 矩阵-向量乘法运算的低效代码
grad = zeros(n+1,1);
for i=1:m,
  grad = grad + b(i) * A(:,i);  % 通常写法为A(:,i)*b(i)
end;
 
% 矩阵-向量乘法运算的高效代码
grad = A*b;


我们看到,代码2是用了低效的for循环语句执行梯度上升(译者注:原文是下降)运算,将b(i)看成(y(i) - sigmoid(theta'*x(:,i))),A看成x,我们就可以使用以下高效率的代码:

% 代码3
grad = x * (y- sigmoid(theta'*x));


这里我们假定Matlab/Octave的sigmoid(z)函数接受一个向量形式的输入z,依次对输入向量的每个元素施行sigmoid函数,最后返回运算结果,因此sigmoid(z)的输出结果是一个与z有相同维度的向量。

当训练数据集很大时,最终的实现(译者注:代码3)充分发挥了Matlab/Octave高度优化的数值线性代数库的优势来进行矩阵-向量操作,因此,比起之前代码要高效得多。

想采用向量化实现并非易事,通常需要周密的思考。但当你熟练掌握向量化操作后,你会发现,这里面有固定的设计模式(对应少量的向量化技巧),可以灵活运用到很多不同的代码片段中。


中英文对照

逻辑回归 Logistic Regression
批量梯度上升法 batch gradient ascent
截距 intercept term
对数似然函数 the log likelihood
导函数 derivative
梯度 gradient


中文译者

林锋(xlfg@yeah.net),谭晓阳(x.tan@nuaa.edu.cn),邓亚峰(dengyafeng@gmail.com)



推荐阅读
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • 本文提供了一种有效的方法来解决当Android Studio因电脑意外重启而导致的所有import语句出现错误的问题。通过清除缓存和重建项目结构,可以快速恢复开发环境。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • R语言中向量(Vector)数据类型的元素索引与访问:利用中括号[]和赋值操作符在向量末尾追加数据以扩展其长度
    在R语言中,向量(Vector)数据类型的元素可以通过中括号 `[]` 进行索引和访问。此外,利用中括号和赋值操作符,可以在向量的末尾追加新数据,从而动态地扩展向量的长度。这种方法不仅简洁高效,还能灵活地管理向量中的数据。 ... [详细]
  • Asynchronous JavaScript and XML (AJAX) 的流行很大程度上得益于 Google 在其产品如 Google Suggest 和 Google Maps 中的应用。本文将深入探讨 AJAX 在 .NET 环境下的工作原理及其实现方法。 ... [详细]
  • Python3爬虫入门:pyspider的基本使用[python爬虫入门]
    Python学习网有大量免费的Python入门教程,欢迎大家来学习。本文主要通过爬取去哪儿网的旅游攻略来给大家介绍pyspid ... [详细]
  • 本文详细介绍如何在 Apache 中设置虚拟主机,包括基本配置和高级设置,帮助用户更好地理解和使用虚拟主机功能。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
author-avatar
小闯娃
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有