经过这么多年的发展,已经从大数据1.0的BI/Datawarehouse时代,经过大数据2.0的Web/APP过渡,进入到了IOT的大数据3.0时代,而随之而来的是数据架构的变化。
▌Lambda架构
在过去Lambda数据架构成为每一个公司大数据平台必备的架构,它解决了一个公司大数据批量离线处理和实时数据处理的需求。一个典型的Lambda架构如下:
数据从底层的数据源开始,经过各种各样的格式进入大数据平台,在大数据平台中经过Kafka、Flume等数据组件进行收集,然后分成两条线进行计算。一条线是进入流式计算平台(例如 Storm、Flink或者Spark Streaming),去计算实时的一些指标;另一条线进入批量数据处理离线计算平台(例如Mapreduce、Hive,Spark SQL),去计算T+1的相关业务指标,这些指标需要隔日才能看见。
Lambda架构经历多年的发展,其优点是稳定,对于实时计算部分的计算成本可控,批量处理可以用晚上的时间来整体批量计算,这样把实时计算和离线计算高峰分开,这种架构支撑了数据行业的早期发展,但是它也有一些致命缺点,并在大数据3.0时代越来越不适应数据分析业务的需求。缺点如下:
● 实时与批量计算结果不一致引起的数据口径问题:因为批量和实时计算走的是两个计算框架和计算程序,算出的结果往往不同,经常看到一个数字当天看是一个数据,第二天看昨天的数据反而发生了变化。
● 批量计算在计算窗口内无法完成:在IOT时代,数据量级越来越大,经常发现夜间只有4、5个小时的时间窗口,已经无法完成白天20多个小时累计的数据,保证早上上班前准时出数据已成为每个大数据团队头疼的问题。
●数据源变化都要重新开发,开发周期长:每次数据源的格式变化,业务的逻辑变化都需要针对ETL和Streaming做开发修改,整体开发周期很长,业务反应不够迅速。
● 服务器存储大:数据仓库的典型设计,会产生大量的中间结果表,造成数据急速膨胀,加大服务器存储压力。
▌Kappa架构
针对Lambda架构的需要维护两套程序等以上缺点,LinkedIn的Jay Kreps结合实际经验和个人体会提出了Kappa架构。Kappa架构的核心思想是通过改进流计算系统来解决数据全量处理的问题,使得实时计算和批处理过程使用同一套代码。此外Kappa架构认为只有在有必要的时候才会对历史数据进行重复计算,而如果需要重复计算时,Kappa架构下可以启动很多个实例进行重复计算。
一个典型的Kappa架构如下图所示:
Kappa架构的核心思想,包括以下三点:
1.用Kafka或者类似MQ队列系统收集各种各样的数据,你需要几天的数据量就保存几天。
2.当需要全量重新计算时,重新起一个流计算实例,从头开始读取数据进行处理,并输出到一个新的结果存储中。
3.当新的实例做完后,停止老的流计算实例,并把老的一些结果删除。
Kappa架构的优点在于将实时和离线代码统一起来,方便维护而且统一了数据口径的问题。而Kappa的缺点也很明显:
● 流式处理对于历史数据的高吞吐量力不从心:所有的数据都通过流式计算,即便通过加大并发实例数亦很难适应IOT时代对数据查询响应的即时性要求。
● 开发周期长:此外Kappa架构下由于采集的数据格式的不统一,每次都需要开发不同的Streaming程序,导致开发周期长。
● 服务器成本浪费:Kappa架构的核心原理依赖于外部高性能存储redis,hbase服务。但是这2种系统组件,又并非设计来满足全量数据存储设计,对服务器成本严重浪费。
▌IOTA架构
而在IOT大潮下,智能手机、PC、智能硬件设备的计算能力越来越强,而业务需求要求数据实时响应需求能力也越来越强,过去传统的中心化、非实时化数据处理的思路已经不适应现在的大数据分析需求,我提出新一代的大数据IOTA架构来解决上述问题,整体思路是设定标准数据模型,通过边缘计算技术把所有的计算过程分散在数据产生、计算和查询过程当中,以统一的数据模型贯穿始终,从而提高整体的预算效率,同时满足即时计算的需要,可以使用各种Ad-hoc Query来查询底层数据:
IOTA整体技术结构分为几部分:
● Common Data Model:贯穿整体业务始终的数据模型,这个模型是整个业务的核心,要保持SDK、cache、历史数据、查询引擎保持一致。对于用户数据分析来讲可以定义为“主-谓-宾”或者“对象-事件”这样的抽象模型来满足各种各样的查询。以大家熟悉的APP用户模型为例,用“主-谓-宾”模型描述就是“X用户 – 事件1 – A页面(2018/4/11 20:00) ”。当然,根据业务需求的不同,也可以使用“产品-事件”、“地点-时间”模型等等。模型本身也可以根据协议(例如 protobuf)来实现SDK端定义,中央存储的方式。此处核心是,从SDK到存储到处理是统一的一个Common Data Model。
●Edge SDKs & Edge Servers:这是数据的采集端,不仅仅是过去的简单的SDK,在复杂的计算情况下,会赋予SDK更复杂的计算,在设备端就转化为形成统一的数据模型来进行传送。例如对于智能Wi-Fi采集的数据,从AC端就变为“X用户的MAC 地址-出现- A楼层(2018/4/11 18:00)”这种主-谓-宾结构,对于摄像头会通过Edge AI Server,转化成为“X的Face特征- 进入- A火车站(2018/4/11 20:00)”。也可以是上面提到的简单的APP或者页面级别的“X用户 – 事件1 – A页面(2018/4/11 20:00) ”,对于APP和H5页面来讲,没有计算工作量,只要求埋点格式即可。
● Real Time Data:实时数据缓存区,这部分是为了达到实时计算的目的,海量数据接收不可能海量实时入历史数据库,那样会出现建立索引延迟、历史数据碎片文件等问题。因此,有一个实时数据缓存区来存储最近几分钟或者几秒钟的数据。这块可以使用Kudu或者Hbase等组件来实现。这部分数据会通过Dumper来合并到历史数据当中。此处的数据模型和SDK端数据模型是保持一致的,都是Common Data Model,例如“主-谓-宾”模型。
● Historical Data:历史数据沉浸区,这部分是保存了大量的历史数据,为了实现Ad-hoc查询,将自动建立相关索引提高整体历史数据查询效率,从而实现秒级复杂查询百亿条数据的反馈。例如可以使用HDFS存储历史数据,此处的数据模型依然SDK端数据模型是保持一致的Common Data Model。
● Dumper:Dumper的主要工作就是把最近几秒或者几分钟的实时数据,根据汇聚规则、建立索引,存储到历史存储结构当中,可以使用map reduce、C、Scala来撰写,把相关的数据从Realtime Data区写入Historical Data区。
● Query Engine:查询引擎,提供统一的对外查询接口和协议(例如SQL JDBC),把Realtime Data和Historical Data合并到一起查询,从而实现对于数据实时的Ad-hoc查询。例如常见的计算引擎可以使用presto、impala、clickhouse等。
● Realtime model feedback:通过Edge computing技术,在边缘端有更多的交互可以做,可以通过在Realtime Data去设定规则来对Edge SDK端进行控制,例如,数据上传的频次降低、语音控制的迅速反馈,某些条件和规则的触发等等。简单的事件处理,将通过本地的IOT端完成,例如,嫌疑犯的识别现在已经有很多摄像头本身带有此功能。
IOTA大数据架构,主要有如下几个特点:
●去ETL化:ETL和相关开发一直是大数据处理的痛点,IOTA架构通过Common Data Model的设计,专注在某一个具体领域的数据计算,从而可以从SDK端开始计算,中央端只做采集、建立索引和查询,提高整体数据分析的效率。
● Ad-hoc即时查询:鉴于整体的计算流程机制,在手机端、智能IOT事件发生之时,就可以直接传送到云端进入real time data区,可以被前端的Query Engine来查询。此时用户可以使用各种各样的查询,直接查到前几秒发生的事件,而不用在等待ETL或者Streaming的数据研发和处理。
● 边缘计算(Edge-Computing):将过去统一到中央进行整体计算,分散到数据产生、存储和查询端,数据产生既符合Common Data Model。同时,也给与Realtime model feedback,让客户端传送数据的同时马上进行反馈,而不需要所有事件都要到中央端处理之后再进行下发。
如上图,IOTA架构有各种各样的实现方法,为了验证IOTA架构,易观也自主设计并实现了“秒算”引擎,目前支持易观内部月活5.5亿设备端进行计算的同时,也基于“秒算”引擎研发出了可以独立部署在企业客户内,进行数字用户分析和营销的“易观方舟”,可以访问ark.analysys.cn进行体验。
在大数据3.0时代,Lambda大数据架构已经无法满足企业用户日常大数据分析和精益运营的需要,去ETL化的IOTA大数据架构才是未来。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com