在教学过程中,通过收集和分析学生日常学习和完成作业过程中产生的数据,老师即能准确知晓每个学生的知识点掌握情况,为每一位学生有针对性地布置作业,达到因材施教的效果。
此外,未来机器人教学也将成为一种趋势,此前在乔治亚理工学院的一个300多人的课堂上,人工智能机器人教吉尔·沃森(Jill Watson)担任了一个月助教,会在第一时间回复邮件,而且口吻并不机械,因此并没有人发现她其实是一个机器人。
学习
对于学生而言,在学习过程中,一方面可应用大数据技术,根据知识点的相互关系,制作知识图谱,制定学习计划,另一方面,数据挖掘技术可以帮助进一步分析学生个人的学习水平,并建立与之相匹配的学习计划,并由AI系统确定如何为学生提供个性化补充指导,以帮助高效学习,避免题海战术。
比如,过去需要3个小时练习的考题,也许真正需要掌握的知识点只需要花费半个小时。那么应用大数据与人工智能,就可以不断对学生的学习成果进行评估,并有针对性地推荐适合每个学生的练习,节约时间,却能达到更好的学习效果。
同时,利用图像识别技术,也能进一步提高学习效率。如今,学生们可以通过手机拍摄教材内容或作业题目,分析照片和文本,并显示相应的要点与难点。随后,在线课堂、百科链接,以及教师上传的PPT以及 PDF 文件等,为自主学习提供了更多可能性,整个过程运用机器学习和自然语言处理技术来收集处理。
另外,在线教育发展得如火如荼,通过提供视频教学、谜语、游戏等灵活多样的课程形式以及优质丰富的课程内容,使学习不只限于某时某地,可以灵活有效地安排学习计划。
其中,就编程而言,越来越多孩子通过在线教育进行学习。如编程猫依靠人工智能和数据挖掘系统,为6~16岁青少年提供了图形化编程平台,并针对不同学生进行差异化课程推送。学生在平台上通过使用图形化编程语言创作游戏、软件、动画、故事等作品,可以同步锻炼提升逻辑思维能力、任务拆解能力、跨学科结合能力和团队协作能力等。
考评
在传统教育中,考试与评价可以说耗费了老师们的大量时间。如今,大数据、文字识别、语音识别、语义识别等技术的日趋成熟,使得规模化的自动批改和个性化反馈走向现实。
通过应用大数据与人工智能,老师只需将需要批阅的试卷进行扫描,就能实时统计并显示扫描过的试卷份数、平均分、最高分,以及最集中的错题和对应知识点,一目了然,方便进行全面、实时分析。
如果需要对几十万、几百万份考试试卷进行分析,也能通过精准的图文识别以及海量文本检索技术,快速核对检查所有试卷与目标相似的文本,并迅速提取并标注出可能存在问题的试卷,帮助实现智能测评。
在这方面,科大讯飞可以说走在行业前沿,其英语口语自动测评、手写文字识别、机器翻译、作文自动评阅技术等已通过教育部鉴定并应用于全国多个省市的高考、中考、学业水平的口语和作文自动阅卷。
管理
如果说学习者大多只是关注“学”的部分,那么学校教育则需要在教学之外,进一步分析教育行为数据,做好管理工作。通过智能技术,充分考虑包括教务处、学生处、校办、校务处等部门在内的校园管理需求,学校可进一步采集、记录、分析教与学及其相关教育行为,更好地勾勒出教育教学的真实形态,有效推进教学信息化。
目前,一些高校已经建立了学生画像、学生行为预警、学生家庭经济状况分析、学生综合数据检索、学生群体分析等功能应用,帮助更好地分辨学生在专业学习或就业方向上的潜能,从而为学生提供个性化的管理与培养方案。
例如,面对多样的选课需求,如何合理排课成为一个亟待解决的难题,而在没有人工智能的时候,老师排课往往需要几周时间,还不能保证让学生都满意。现在用人工智能算法进行排课,学生只需提交自己的课程选择,系统可以结合课程、教室、师资进行快速的排课,大大提高效率与学生满意度。
在教育领域,这只是开始,大数据、人工智能对教育的变革还将持续发酵。未来,以大数据实现教育个性化,用人工智能赋能教育,在成倍放大教育产能的同时,将使得优质教学资源得到充分利用,从而做到因材施教、因人施教。
对此,我们不仅要仰望星空,更要脚踏实地。正如教育家叶圣陶先生所言,教育是农业,而非工业。不仅教育需要一个发展过程,同时孩子们也如农作物一般需要成长时间,而大数据与人工智能则将成为其生长期重要的养分与辅助力量。
图片来自网络。
编辑:黄继彦
校对:王红玉
为保证发文质量、树立口碑,数据派现设立“错别字基金”,鼓励读者积极纠错。
若您在阅读文章过程中发现任何错误,请在文末留言,或到后台反馈,经小编确认后,数据派将向检举读者发8.8元红包。
同一位读者指出同一篇文章多处错误,奖金不变。不同读者指出同一处错误,奖励第一位读者。
感谢一直以来您的关注和支持,希望您能够监督数据派产出更加高质的内容。