热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

《大话数据结构》第2章算法基础2.9算法的时间复杂度伍迷

2.9算法的时间复杂度2.9.1算法时间复杂度定义在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的

《大话数据结构》第2章 算法基础 2.9 算法的时间复杂度

2.9 算法的时间复杂度

 

2.9.1 算法时间复杂度定义

        在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

        这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。
        一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
        显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n2)。我们分别给它们取了非官方的名称,O(1)叫常数阶,O(n)叫线性阶,O(n2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。

2.9.2 推导大O阶方法

        那么如何分析一个算法的时间复杂度呢?即如何推导大O阶呢?我们给出了下面的推导方法,基本上,这也就是总结前面我们举的例子

推导大O阶 1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大O阶。

        哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,我们还需要多看几个例子。

2.9.3 常数阶
        首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法,为什么时间复杂度不是O(3),而是O(1)。

 

int sum = 0,n = 100;  /*执行一次*/
sum 
= (1+n)*n/2;   /*执行一次*/
printf(
"%d", sum);  /*执行一次*/

        这个算法的运行次数函数是f(n)=3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。
        另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,即:

 

int sum = 0, n = 100/*执行一次*/
sum 
= (1+n)*n/2;   /*执行第1次*/
sum 
= (1+n)*n/2;   /*执行第2次*/
sum 
= (1+n)*n/2;   /*执行第3次*/
sum 
= (1+n)*n/2;   /*执行第4次*/
sum 
= (1+n)*n/2;   /*执行第5次*/
sum 
= (1+n)*n/2;   /*执行第6次*/
sum 
= (1+n)*n/2;   /*执行第7次*/
sum 
= (1+n)*n/2;   /*执行第8次*/
sum 
= (1+n)*n/2;   /*执行第9次*/
sum 
= (1+n)*n/2;   /*执行第10次*/
printf(
"%d",sum);  /*执行一次*/ 

        事实上无论n为多少,上面的两段代码就是3次和12次执行的差异,这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。
        注意,不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字。这是初学者常常犯的错误。
        对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。

2.9.4 线性阶
        循环结构就会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
        下面这段代码,它的循环的时间复杂度为O(n)。因为循环体中的代码须要执行n次。

int i;
for(i = 0; i < n; i++)
{
   
/*时间复杂度为O(1)的程序步骤序列*/
}

2.9.5 对数阶
        那么下面的这段代码,时间复杂度又是多少呢?

int count = 1;
while (count < n)
{
   count 
= count * 2;
   
/*时间复杂度为O(1)的程序步骤序列*/
}

        由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

2.9.6 平方阶
        下面的例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

 

int i,j;
for(i = 0; i < n; i++)
{
   
for (j = 0; j < n;j++)                       
   {                                      
       
/*时间复杂度为O(1)的程序步骤序列*/
   }                                      
}

        而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为O(n2)。
        如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。

int i,j;
for(i = 0; i < m; i++)
{
   
for (j = 0; j < n; j++)                
   {                                      
       
/*时间复杂度为O(1)的程序步骤序列*/
   }                                      
}

        所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
        那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i,j;
for(i = 0; i < n; i++)
{
    
for (j = i; j < n; j++)  /*注意int j = i而不是0*/
    {                                      
          
/*时间复杂度为O(1)的程序步骤序列*/
    }                                      
}

              由于当i = 0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i = n-1时,内循环执行了1次。所以总的执行次数为

 

        用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2;第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。
        从这个例子,我们也可以得到一个经验,其实理解大O推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,所以想考研的朋友,要想在求算法时间复杂度这里不失分,可能需要强化你的数学,特别是数列方面的知识和解题能力。
        我们继续看例子,对于方法调用的时间复杂度又如何分析。

 

int i,j;
for(i = 0; i < n; i++)
{
   function(i);
}
 

              上面这段代码调用一个函数function。

void function(int count)
{
   print(count);
}

       函数体是打印这个参数。其实这很好理解,function函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。
       假如function是下面这样的:

void function(int count)
{
   
int j;
   
for (j = count; j < n;j++)                       
   {                                      
      
/*时间复杂度为O(1)的程序步骤序列*/
   }    

        事实上,这和刚才举的例子是一样的,只不过把嵌套内循环放到了函数中,所以最终的时间复杂度为O(n2)。
        下面这段相对复杂的语句:

n++;       /*执行次数为1*/
function(n);     
/*执行次数为n*/
int i,j;     
for(i = 0; i < n; i++)  /*执行次数为n2*/
{
   function (i);
}
for(i = 0; i < n; i++)  /*执行次数为n(n + 1)/2*/
{
   
for (j = i;j < n; j++)                       
   {                                      
        
/*时间复杂度为O(1)的程序步骤序列*/
   }                                      
}
 
         它的执行次数 ,根据推导大O阶的方法,最终这段代码的时间复杂度也是O(n2)。

推荐阅读
  • 本文介绍了如何在多线程环境中实现异步任务的事务控制,确保任务执行的一致性和可靠性。通过使用计数器和异常标记字段,系统能够准确判断所有异步线程的执行结果,并根据结果决定是否回滚或提交事务。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • 本文详细介绍了如何在不同操作系统和设备上设置和配置网络连接的IP地址,涵盖静态和动态IP地址的设置方法。同时,提供了关于路由器和机顶盒等设备的IP配置指南。 ... [详细]
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文详细介绍了如何在PHP中删除数组中的指定元素、第一个元素和最后一个元素,并提供了具体的代码示例和相关函数的使用说明。 ... [详细]
  • C/C++ 指针操作解析:双向链表中元素的取消链接
    本文详细解释了在C语言中使用指针进行双向链表元素取消链接的操作,探讨了`next->prev`和`prev`之间的关系,并提供了代码示例和可视化辅助理解。 ... [详细]
  • 本文介绍如何使用PHP在WordPress中根据分类类别ID或名称获取所有相关文章,提供详细的方法和代码示例。 ... [详细]
  • 本文深入探讨了SQL数据库中常见的面试问题,包括如何获取自增字段的当前值、防止SQL注入的方法、游标的作用与使用、索引的形式及其优缺点,以及事务和存储过程的概念。通过详细的解答和示例,帮助读者更好地理解和应对这些技术问题。 ... [详细]
  • 小编给大家分享一下如何移除URL中的index.php,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收 ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 嵌入式开发环境搭建与文件传输指南
    本文详细介绍了如何为嵌入式应用开发搭建必要的软硬件环境,并提供了通过串口和网线两种方式将文件传输到开发板的具体步骤。适合Linux开发初学者参考。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
author-avatar
u39722555
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有