热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

DB、ETL、DW、OLAP、DM、BI关系ZT

DB、ETL、DW、OLAP、DM、BI关系ZT在此大概用口水话简单叙述一下他们几个概念:(1)DBDatabase数据库——这里一般指的
DB、ETL、DW、OLAP、DM、BI关系 ZT

在此大概用口水话简单叙述一下他们几个概念:

 

(1)DB/Database/数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统。DB保留的是数据信息的最新状态,只有一个状态!比如,每天早上起床洗脸照镜子,看到的就是当时的状态,至于之前的每天的状态,不会出现的你的眼前,这个眼前就是db。


(2)DW/Data Warehouse/数据仓库——这里保存的是DB中的不同时间点的状态,比如,每天早上洗完照镜子时,都拍一张照片,天天这样,这些照片放入到一个相册中,之后就可以查看每一天的状态了,这个相册就是数据仓库,他保存的是数据在不同时间点的状态,对同一个数据信息,保留不同时间点的状态,就便于我们做统计分析了。


(3)ETL/Extraction-Transformation-Loading——用于完成DB到DW的数据转存,它将DB中的某一个时间点的状态,“抽取”出来,根据DW的存储模型要求,“转换”一下数据格式,然后再“加载”到DW的一个过程,这里需要强调的是,DB的模型是ER模型,遵从范式化设计原则,而DW的数据模型是雪花型结构或者星型结构,用的是面向主题,面向问题的设计思路,所以DB和DW的模型结构不同,需要进行转换。 

 

(4)OLAP——在线分析系统,简单说就是报表系统,销售报表,统计报表,等等,这个大家都熟悉,当然,OLAP的统计要更复杂更丰富一些,比如切面,钻取等等。 

 

(5)DM/Data Mining/数据挖掘——这个挖掘,不是简单的统计了,他是根据概率论的或者其他的统计学原理,将DW中的大数据量进行分析,找出我们不能直观发现的规律,比如,如果我们每天早上照相,量身材的时候,还记录下头一天吃的东西,黄瓜,猪腿,烤鸭,以及心情,如果记录上10年,形成了3650天的相貌和饮食心情的数据,我们每个人都记录,有20万人记录了,那么,我们也许通过这些记录,可以分析出,身材相貌和饮食的客观规律;再说一个典型的实例,就是英国的超市,在积累了大量数据之后,对数据分析挖掘之后,得到了一个规律:将小孩的尿布和啤酒放在一起,销量会更好——业务专家在得到该结论之后,仔细分析,知道了原因,因为英国男人喜欢看足球的多,老婆把小孩介绍男人看管,小孩尿尿需要尿布,而男人看足球喜欢喝酒,所以两样商品有密切的关系,放在一起销售会更好!

 

(6)BI/Business Intelligence/商业智能——领导,决策者,在获取了OLAP的统计信息,和DM得到的科学规律之后,对生产进行适当的调整,比如,命令超市人员将啤酒喝尿布放在一起销售,这就反作用于DB修改存货数据了——这就是整个BI的作用!

 

-----------

看完了才发现,我连DW都没搞过。不过还好,专业的事情交给专业的公司去做,比如拿着Wyn Enterprise,连ETL是个啥都不太懂的我们也可以愉快的做BI,还是基于浏览器使用的自助式BI哦。

“赋能开发者”,葡萄城还真不是闹着玩的。

posted on 2018-11-19 14:35 春笋拔节 阅读(...) 评论(...) 编辑 收藏

转:https://www.cnblogs.com/chunsunbajie/p/9982998.html



推荐阅读
  • Django xAdmin 使用指南(第一部分)
    本文介绍如何在Django项目中集成和使用xAdmin,这是一个增强版的管理界面,提供了比Django默认admin更多的功能。文中详细描述了集成步骤及配置方法。 ... [详细]
  • 本文深入探讨了SQL数据库中常见的面试问题,包括如何获取自增字段的当前值、防止SQL注入的方法、游标的作用与使用、索引的形式及其优缺点,以及事务和存储过程的概念。通过详细的解答和示例,帮助读者更好地理解和应对这些技术问题。 ... [详细]
  • 主调|大侠_重温C++ ... [详细]
  • 本文档介绍了如何在Visual Studio 2010环境下,利用C#语言连接SQL Server 2008数据库,并实现基本的数据操作,如增删改查等功能。通过构建一个面向对象的数据库工具类,简化了数据库操作流程。 ... [详细]
  • 如何在SQL Server 2008中通过Profiler跟踪特定数据库及获取客户端信息
    本文介绍如何利用SQL Server Profiler工具来监控特定数据库的操作,并获取执行这些操作的客户端计算机名和账户名。步骤包括创建新的跟踪、配置跟踪属性以及设置列筛选器以精确过滤数据。 ... [详细]
  • 理解与应用:独热编码(One-Hot Encoding)
    本文详细介绍了独热编码(One-Hot Encoding)与哑变量编码(Dummy Encoding)两种方法,用于将分类变量转换为数值形式,以便于机器学习算法处理。文章不仅解释了这两种编码方式的基本原理,还探讨了它们在实际应用中的差异及选择依据。 ... [详细]
  • ML学习笔记20210824分类算法模型选择与调优
    3.模型选择和调优3.1交叉验证定义目的为了让模型得精度更加可信3.2超参数搜索GridSearch对K值进行选择。k[1,2,3,4,5,6]循环遍历搜索。API参数1& ... [详细]
  • 请看|间隔时间_Postgresql 主从复制 ... [详细]
  • MySQL锁机制详解
    本文深入探讨了MySQL中的锁机制,包括表级锁、行级锁以及元数据锁,通过实例详细解释了各种锁的工作原理及其应用场景。同时,文章还介绍了如何通过锁来优化数据库性能,避免常见的并发问题。 ... [详细]
  • 深入解析Android中的SQLite数据库使用
    本文详细介绍了如何在Android应用中使用SQLite数据库进行数据存储。通过自定义类继承SQLiteOpenHelper,实现数据库的创建与版本管理,并提供了具体的学生信息管理示例代码。 ... [详细]
  • 本文将详细介绍如何在ThinkPHP6框架中实现多数据库的部署,包括读写分离的策略,以及如何通过负载均衡和MySQL同步技术优化数据库性能。 ... [详细]
  • XWiki 数据模型开发指南
    本文档不仅介绍XWiki作为一个增强版的wiki引擎,还深入探讨了其数据模型,该模型可在用户界面层面被充分利用。借助其强大的脚本能力,XWiki的数据模型支持从简单的应用到复杂的系统构建,几乎无需直接接触XWiki的核心组件。 ... [详细]
  • 本文总结了MySQL的一些实用技巧,包括查询版本、修改字段属性、添加自动增长字段、备份与恢复数据库等操作,并提供了一些常见的SQL语句示例。 ... [详细]
  • 本文探讨了随着并发需求的增长,MySQL数据库架构如何从简单的单一实例发展到复杂的分布式系统,以及每一步演进背后的原理和技术解决方案。 ... [详细]
  • 地球坐标、火星坐标及百度坐标间的转换算法 C# 实现
    本文介绍了WGS84坐标系统及其精度改进历程,探讨了火星坐标系统的安全性和应用背景,并详细解析了火星坐标与百度坐标之间的转换算法,提供了C#语言的实现代码。 ... [详细]
author-avatar
山寨西域刀羊_281
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有