热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

DB、ETL、DW、OLAP、DM、BI关系ZT

DB、ETL、DW、OLAP、DM、BI关系ZT在此大概用口水话简单叙述一下他们几个概念:(1)DBDatabase数据库——这里一般指的
DB、ETL、DW、OLAP、DM、BI关系 ZT

在此大概用口水话简单叙述一下他们几个概念:

 

(1)DB/Database/数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统。DB保留的是数据信息的最新状态,只有一个状态!比如,每天早上起床洗脸照镜子,看到的就是当时的状态,至于之前的每天的状态,不会出现的你的眼前,这个眼前就是db。


(2)DW/Data Warehouse/数据仓库——这里保存的是DB中的不同时间点的状态,比如,每天早上洗完照镜子时,都拍一张照片,天天这样,这些照片放入到一个相册中,之后就可以查看每一天的状态了,这个相册就是数据仓库,他保存的是数据在不同时间点的状态,对同一个数据信息,保留不同时间点的状态,就便于我们做统计分析了。


(3)ETL/Extraction-Transformation-Loading——用于完成DB到DW的数据转存,它将DB中的某一个时间点的状态,“抽取”出来,根据DW的存储模型要求,“转换”一下数据格式,然后再“加载”到DW的一个过程,这里需要强调的是,DB的模型是ER模型,遵从范式化设计原则,而DW的数据模型是雪花型结构或者星型结构,用的是面向主题,面向问题的设计思路,所以DB和DW的模型结构不同,需要进行转换。 

 

(4)OLAP——在线分析系统,简单说就是报表系统,销售报表,统计报表,等等,这个大家都熟悉,当然,OLAP的统计要更复杂更丰富一些,比如切面,钻取等等。 

 

(5)DM/Data Mining/数据挖掘——这个挖掘,不是简单的统计了,他是根据概率论的或者其他的统计学原理,将DW中的大数据量进行分析,找出我们不能直观发现的规律,比如,如果我们每天早上照相,量身材的时候,还记录下头一天吃的东西,黄瓜,猪腿,烤鸭,以及心情,如果记录上10年,形成了3650天的相貌和饮食心情的数据,我们每个人都记录,有20万人记录了,那么,我们也许通过这些记录,可以分析出,身材相貌和饮食的客观规律;再说一个典型的实例,就是英国的超市,在积累了大量数据之后,对数据分析挖掘之后,得到了一个规律:将小孩的尿布和啤酒放在一起,销量会更好——业务专家在得到该结论之后,仔细分析,知道了原因,因为英国男人喜欢看足球的多,老婆把小孩介绍男人看管,小孩尿尿需要尿布,而男人看足球喜欢喝酒,所以两样商品有密切的关系,放在一起销售会更好!

 

(6)BI/Business Intelligence/商业智能——领导,决策者,在获取了OLAP的统计信息,和DM得到的科学规律之后,对生产进行适当的调整,比如,命令超市人员将啤酒喝尿布放在一起销售,这就反作用于DB修改存货数据了——这就是整个BI的作用!

 

-----------

看完了才发现,我连DW都没搞过。不过还好,专业的事情交给专业的公司去做,比如拿着Wyn Enterprise,连ETL是个啥都不太懂的我们也可以愉快的做BI,还是基于浏览器使用的自助式BI哦。

“赋能开发者”,葡萄城还真不是闹着玩的。

posted on 2018-11-19 14:35 春笋拔节 阅读(...) 评论(...) 编辑 收藏

转:https://www.cnblogs.com/chunsunbajie/p/9982998.html



推荐阅读
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 图数据库中的知识表示与推理机制
    本文探讨了图数据库及其技术生态系统在知识表示和推理问题上的应用。通过理解图数据结构,尤其是属性图的特性,可以为复杂的数据关系提供高效且优雅的解决方案。我们将详细介绍属性图的基本概念、对象建模、概念建模以及自动推理的过程,并结合实际代码示例进行说明。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文探讨了如何在 F# Interactive (FSI) 中通过 AddPrinter 和 AddPrintTransformer 方法自定义类型(尤其是集合类型)的输出格式,提供了详细的指南和示例代码。 ... [详细]
  • 探讨ChatGPT在法律和版权方面的潜在风险及影响,分析其作为内容创造工具的合法性和合规性。 ... [详细]
  • ML学习笔记20210824分类算法模型选择与调优
    3.模型选择和调优3.1交叉验证定义目的为了让模型得精度更加可信3.2超参数搜索GridSearch对K值进行选择。k[1,2,3,4,5,6]循环遍历搜索。API参数1& ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 地球坐标、火星坐标及百度坐标间的转换算法 C# 实现
    本文介绍了WGS84坐标系统及其精度改进历程,探讨了火星坐标系统的安全性和应用背景,并详细解析了火星坐标与百度坐标之间的转换算法,提供了C#语言的实现代码。 ... [详细]
  • 本文由蕤内撰写,明亮公司出品,探讨了日本零售业在数字化转型中的现状与挑战。文章基于与两位在日本的投资人的深入对话,分析了日本零售业为何仍然依赖传统的POS机系统,以及中日两国在品牌建设和数字化营销上的差异。 ... [详细]
author-avatar
山寨西域刀羊_281
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有