热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Cython的用法以及填坑姿势

因为项目需要,需要优化已有的Python代码。目前Python代码的执行过程是将Python代码转变成一行行指令,然后解释器解释指令的执行,调用到C代码层。如果去掉指令解释这个阶段,直接进入C代码层,

因为项目需要,需要优化已有的Python代码。目前Python代码的执行过程是将Python代码转变成一行行指令,然后解释器解释指令的执行,调用到C代码层。如果去掉指令解释这个阶段,直接进入C代码层,效率就比较高了。如果用之前所述的使用Python C API将Python代码改造为C代码并作为Python的内建模块,工作量极其大,也不能保证其正确性,所以这种方法不太现实。而Cython库正好符合这种场景需求,将已有的Python代码转化为C语言的代码,并作为Python的built-in模块扩展。

版本说明:

Python 2.7.13  (CPython)

Cython 0.25.2

Python的文件类型介绍:

.py       python的源代码文件

.pyc     Python源代码import后,编译生成的字节码

.pyo     Python源代码编译优化生成的字节码。pyo比pyc并没有优化多少,只是去掉了断言

.pyd     Python的动态链接库(Windows平台)

.py, .pyc, .pyo 运行速度几乎无差别,只是pyc, pyo文件加载的速度更快,不能用文本编辑器查看内容,反编译不太容易

 

本文的目标是将test.py文件生成test.c文件,然后将test.c文件作为Python源码的一部分,重新编译生成Python,使用时直接import test即可使用test模块。

Cython基本介绍:

文档中这样总结Cython:

Cython is an optimising static compiler for both the Python programming language and the extended Cython programming language (based on Pyrex). It makes writing C extensions for Python as easy as Python itself.

是一个Python编程语言的编译器,写C扩展就像写Python代码一样容易。

其最重要的功能是:

  • write Python code that calls back and forth from and to C or C++ code natively at any point.

即 将Python代码翻译为C代码。之后就可以像前面文章介绍的C语言扩展Python模块使用这些C代码了。

 

Cython基本用法:

 在使用Cython编译Python代码时,务必要安装C/C++编译器,本文是直接安装了Visiual Studio 2015的开发环境。

1. 安装Cython库

   pip install Cython

 就是如此简单明了

2. 编写一个测试代码文件test.py放在D:/test/test.py

def say_hello():
print "hello world"

然后在同一目录下,新建一个setup.py文件,内容如下:

from distutils.core import setup
from Cython.Build import cythonize

setup(ext_modules
= cythonize("test.py"))

cythonize()是Cython提供将Python代码转换成C代码的API,

setup是Python提供的一种发布Python模块的方法。

3. 使用命令行编译Python代码:

python setup.py build_ext  --inplace

如果出现这种情况是因为没有C编译器相关的配置没有设置好,在Windows上一般采用Microsoft VisualStudio,不同的VS版本设置不同。

  • Visual Studio 2010 (VS10): SET VS90COMNTOOLS=%VS100COMNTOOLS%
  • Visual Studio 2012 (VS11): SET VS90COMNTOOLS=%VS110COMNTOOLS%
  • Visual Studio 2013 (VS12): SET VS90COMNTOOLS=%VS120COMNTOOLS%
  • Visual Studio 2015 (VS14): SET VS90COMNTOOLS=%VS140COMNTOOLS%
  • Visual Studio 2017 (VS14): SET VS90COMNTOOLS=%VS150COMNTOOLS% 

这里采用VS2015作为C的编译器。

在命令行中输入SET VS90COMNTOOLS=%VS140COMNTOOLS%

然后输入编译命令:python setup.py build_ext --inplace

最终的生成结果如下:

在D:/test/ 目录中:

test.c是test.py转化后的C代码文件,可以看到test.c非常大!!

test.pyd是python的动态链接库,我们在使用import test时会加载

build目录编译过程中生成的临时文件

使用刚刚生成的test模块,就像使用Python的任意模块一样:

 

这里稍微解释一下 命令行:python setup.py build_ext --inplace

build_ext是指明python生成C/C++的扩展模块(build C/C++ extensions (compile/link to build directory))

--inplace指示 将编译后的扩展模块直接放在与test.py同级的目录中。

 

整个Cython工作的流程如下图所示:

分两步:

1).py文件使用Cython被编译为.c文件;

2).c文件使用C编译器生成.pyd(windos)或.so(linux)文件。

 除了这种普遍的用法外,还可以在Python代码的某些地方加上静态类型声明,也可以更进一步提升Python的运行效率,这些属于小技巧了~

比如:

def say_hello(int s):
cdef int a
= 2
print s + 2

s和a变量直接指示为int类型,不用再做动态语言的类型推断了。

 

小测试:

import math
import time

def f():
time1
= time.time()
for i in range(100000000):
x
= math.sqrt(i)
time2
= time.time()
print time2 - time1

这段原生的Python代码运行时间是13.17秒,使用Cython优化后,运行时间为9.36秒。基本上提升30%。其实Cython一般对外声称的效率提升也大概是这么多。

 

Cython中的坑

在这一小节中,讨论Cython中的一些坑以及填坑姿势。Cython官方文档中已经明确指出一些不支持的Python特性,有些不打算修复,再结合具体项目场景,给出一些坑的解决方案。

具体项目需求: 将一些需要优化的Python代码模块翻译成C代码,加入项目中,编译链接之后,作为Python的一个built-in模块。

所以,只需要转换成C代码这一步骤即可,不需要使用Python提供的distutils模块,只需要Cython提供的cythonize。

1. 从Python的site-package中提取install的Cython目录,独立出来。因为是供给其他人使用,其他人pip install cython的话可能版本不一致,会出现一些问题。

Cython目录是Cython源码以及Python2.7/Lib/site-package下的cython.py,即:

CythonTool是封装了转化为C代码的py脚本文件。

在使用时,需要设置一下sys.path,在import时才能找到我们独立出来的Cython模块。

# import Cython path
sys.path.insert(0, cython_path)
from Cython.Build import cythonize
from Cython.Compiler import Options

在sys.path的头部添加cython_path,所以Python site-package里的Cython就不会影响我们独立出来的Cython模块。

2. 在编译python代码为C代码时,需要指定输出的C代码文件路径,Cython默认的是python脚本目录,这样会导致py文件与.c文件混在一起,很容易就乱了。

目前工作目录有三个

LibDir:  需要优化的Python脚本所在目录

CfileDir: 输出的C代码文件所在的目录

ToolDir:  封装的cython优化脚本所在的目录,其作用是将LibDir中的Python模块转换为C代码,然后输出到CfileDir

故而封装的cython脚本工作目录在ToolDir,脚本中最核心的是代码是:

cythonize(pyfilePath, build_dir=CfileDir)

使用build_dir参数指明C代码输出目录。

看起来很完美,但是Cython源码在这里里有个坑。

当指定build_dir时,当pyfilePath与CfileDir都为绝对路径时,且cython脚本的工作目录与pyfilePath不一致时,cythonize会将输出文件的目录置为pyfilePath所在的目录,故最后输出的C代码文件不会到CfileDir里。

所以应该在封装的cython脚本里调用os.chdir(LibDir),转换完成时再切换到原有工作目录。牢记cython的工作目录应该与待优化的python脚本目录一致。

原因:cythonize中的实现有这样一段代码:【调试状态下】

 

红色框中,如果c_file是一个绝对文件名时,会出现以下情况,至于c_file为什么会是一个绝对的文件名,是因为cython的工作目录与待优化脚本目录不匹配导致的。

 

 3. 原始的Cython对Python的Package支持度不够,一个大坑!!

只能通过修改Cython的源码来填坑。

原始的Cython编译Python之后,生成的C代码里有两个关键的地方,拿test模块为例:

这里定义了test模块初始化函数,这个函数里会有创建test模块的代码部分:

当import时,Python解释器会调用这里,初始化test模块,将test名字加入到sys.builtin_module_names中。

测试发现,如果有D:/Lib/mypackate/test.py , 编译后,生成的C代码与D:/Lib/test.py生成的代码并无不同,即mypackate这个包被忽略了,导致生成的C代码没有了包依赖关系。

顺着代码阅读,最终确定了问题出现的源头,Cython/Compiler/ModuleNode.py, 修改了此文件中的两个函数:

1)生成模块init代码函数:full_module_name替换掉env.module_name, 即用initmypackage_test替换init_test

2) 修改了创建模块时传入的模块名规则,并考虑到mypackage/__init__.py这种情况, 对于package来说需要加入__path__用以标识这个对象不是普通的Python模块,而是一个包。

 

 4.  深坑。 inspect、types相关。

Inspect模块中有各种类型判断函数,比如 isfunction, ismethod, ismodule等。这里的坑是:

cython化的函数类型变为了cython_function_or_method,而原始python的函数类型是function,所以如果待优化的Python脚本中使用isfunction(func, types.FunctionType)时,如果func是原始的函数则返回True,而cython化的函数返回False. 除了function类型外还有generator, functionType.func_globals类型也存在不一致。

目前在inspect.py的isfunction中加入了trick,会判断

type(func).__name__=="cython_function_or_method". 并且types.py模块不被cython化,那么如果调用inspect.isfunction(func, types.FunctionType)对于原始的Python函数还是cython化的函数都没有问题了。

但是如果直接使用isinstance(func, types.FunctionType)仍然会存在问题,types.FunctionType只对原始的python函数判断正确。

比较绕,总而言之一句话,python里的类型和cython化后的对应的类型可能会不同。我总结了大部分python类型,其中有几个cython化后类型不一致:

没有什么太好的解决办法,要么改写inspect模块,但还要保证Python代码不能直接使用types模块,要么修改Python源码中关于isinstance的实现。

5. 官方文档中列出的坑

1) 不支持Nested tuple, Python2中的特性,Python3不支持了。所以Cython直接不支持Nested tuple特性

2)找不到变量名:You can disable the latter behaviour by setting "error_on_unknown_names" to

 解决办法:

3)Stack Frames. 

 Cython不支持Stack Frame。

 

总结:可以考虑使用Cython优化一些简单的Python项目,如果用到非常复杂的场景的话,有些语法的特性不支持,会有绕不过去的坑

 

参考资料:

https://github.com/cython/cython

https://mdqinc.com/blog/2011/08/statically-linking-python-with-cython-generated-modules-and-packages/

 


推荐阅读
  • 掌握PHP编程必备知识与技巧——全面教程在当今的PHP开发中,了解并运用最新的技术和最佳实践至关重要。本教程将详细介绍PHP编程的核心知识与实用技巧。首先,确保你正在使用PHP 5.3或更高版本,最好是最新版本,以充分利用其性能优化和新特性。此外,我们还将探讨代码结构、安全性和性能优化等方面的内容,帮助你成为一名更高效的PHP开发者。 ... [详细]
  • 单片机入门指南:基础理论与实践
    本文介绍了单片机的基础知识及其应用。单片机是一种将微处理器(类似于CPU)、存储器(类似硬盘和内存)以及多种输入输出接口集成在一块硅片上的微型计算机系统。通过详细解析其内部结构和功能,帮助初学者快速掌握单片机的基本原理和实际操作方法。 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 触发器的稳态数量分析及其应用价值
    本文对数据库中的SQL触发器进行了稳态数量的详细分析,探讨了其在实际应用中的重要价值。通过研究触发器在不同场景下的表现,揭示了其在数据完整性和业务逻辑自动化方面的关键作用。此外,还介绍了如何在Ubuntu 22.04环境下配置和使用触发器,以及在Tomcat和SQLite等平台上的具体实现方法。 ... [详细]
  • 在开发过程中,我最初也依赖于功能全面但操作繁琐的集成开发环境(IDE),如Borland Delphi 和 Microsoft Visual Studio。然而,随着对高效开发的追求,我逐渐转向了更加轻量级和灵活的工具组合。通过 CLIfe,我构建了一个高度定制化的开发环境,不仅提高了代码编写效率,还简化了项目管理流程。这一配置结合了多种强大的命令行工具和插件,使我在日常开发中能够更加得心应手。 ... [详细]
  • 在使用 SQL Server 时,连接故障是用户最常见的问题之一。通常,连接 SQL Server 的方法有两种:一种是通过 SQL Server 自带的客户端工具,例如 SQL Server Management Studio;另一种是通过第三方应用程序或开发工具进行连接。本文将详细分析导致连接故障的常见原因,并提供相应的解决策略,帮助用户有效排除连接问题。 ... [详细]
  • Java中高级工程师面试必备:JVM核心知识点全面解析
    对于软件开发人员而言,随着技术框架的不断演进和成熟,许多高级功能已经被高度封装,使得初级开发者只需掌握基本用法即可迅速完成项目。然而,对于中高级工程师而言,深入了解Java虚拟机(JVM)的核心知识点是必不可少的。这不仅有助于优化性能和解决复杂问题,还能在面试中脱颖而出。本文将全面解析JVM的关键概念和技术细节,帮助读者全面提升技术水平。 ... [详细]
  • 提升Python多环境管理效率:深入探索多Python Pip应用策略
    提升Python多环境管理效率:深入探索多Python Pip应用策略 ... [详细]
  • Python,英国发音:ˈpaɪθən,美国发音:ˈpaɪθ��ːn,空耳读法为“ ... [详细]
  • 开发笔记:Python之路第一篇:初识Python
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Python之路第一篇:初识Python相关的知识,希望对你有一定的参考价值。Python简介& ... [详细]
  • 本文将详细探讨PHP中C的作用,并对比其他编程语言如Java和C的特点及其适用场景。 ... [详细]
  • Leetcode学习成长记:天池leetcode基础训练营Task01数组
    前言这是本人第一次参加由Datawhale举办的组队学习活动,这个活动每月一次,之前也一直关注,但未亲身参与过,这次看到活动 ... [详细]
  • Linux基础知识:Vi与Vim编辑器详解
    Linux基础知识:Vi与Vim编辑器详解 ... [详细]
  • 如何在您的计算机上配置Python和PyCharm开发环境
    本文详细介绍了在Windows 10系统上配置Python和PyCharm开发环境的步骤。内容包括Python的安装与卸载、PyCharm的安装与卸载,以及如何在Windows 10中通过双击安装文件“python-3.7.2-amd64.exe”来完成Python的安装。此外,还提供了关于环境变量配置和基本设置的实用建议,帮助用户快速搭建高效的开发环境。 ... [详细]
  • CTF竞赛中文件上传技巧与安全绕过方法深入解析
    CTF竞赛中文件上传技巧与安全绕过方法深入解析 ... [详细]
author-avatar
手机用户2502908277
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有