热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

从零开始安装CaffeCPUonly没有pycaffe

最近新发了一台服务器,i7-47903.6GHz处理器,显卡GTX1080TiPascal开始新一轮的装机旅程。系统是厂家安装的Ubuntu14.04

最近新发了一台服务器, i7-4790/3.6GHz 处理器, 显卡 GTX 1080 Ti Pascal
开始新一轮的装机旅程。
系统是厂家安装的 Ubuntu14.04

下面从零开始安装Caffe

sudo apt-get update
sudo apt-get update

(2)安装caffe的依赖项
1)一般依赖项
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev

2)BLAS依赖项
sudo apt-get install libatlas-base-dev
sudo apt-get install libopenblas-dev

3)python依赖项
安装python及其头文件
sudo apt-get install python
sudo apt-get install python-dev

安装python的其他依赖
sudo apt-get install python-numpy
sudo apt-get install ipython
sudo apt-get install ipython-notebook
sudo apt-get install python-sklearn
sudo apt-get install python-skimage
sudo apt-get install python-protobuf

4)谷歌glog和gflags和lmdb依赖项
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

(5)安装git,并且下载代码
sudo apt-get install git
git clone https://github.com/BVLC/caffe.git
然后进入到源码目录
cd caffe

(6)编译Caffe
cp Makefile.config.example Makefile.config
然后修改Makefile.config设置你的python的路径和matlab的路径
# 修改Makefile.config文件:去掉CPU_ONLY:= 1的注释

注意:-j8表示使用多核进行编译,8是核心个数

$ make all
$ make test
$make runtest

接着看看在 Caffe 中怎么用 LetNet-5 进行训练和测试,整个流程如下:(先cd到 Caffe 的根目录下)
1)下载 minist 数据的命令:
\$cd data/mnist
$ ./get_mnist.sh

这个脚本主要内容是从 http://yann.lecun.com 上下载 mnist 训练和测试数据,并解压

2)将下载的数据转换为 Caffe 能识别的数据格式 LEVELDB 或 LMDB,对应的命令为:
$ ./examples/mnist/create_mnist.sh
上面的脚本调用了 build/examples/mnist/convert_mnist_data.bin这个可执行程序,对应的源文件为 convert_mnist_data.cpp
完成之后,在目录 examples/mnist 发现生成了 examples/mnist/mnist_train_\ lmdb/ (对应训练集) 和 examples/mnist/mnist_test_lmdb/ (对应测试集或验证集)两个目录,每个目录下都有两个文件: data.mdb和lock.mdb

3)定义 LetNet-5 网络模型,在 lenet.prototxt 中描述了广义的LetNet-5网络层设置,在 lenet_train_test.prototxt 中描述了 LetNet-5 训练和 测试时各网络层的设置。大致是差不多的,就是有些细节不一样。

4)有了网络模型,在训练前我们还需要指定一些训练参数,在lenet_solver.prototxt 中实现该功能的。这个文件最后一行是 GPU,如果没有GPU,需要改为CPU。不然报错

可以修改一下训练迭代次数,这样时间不太长
# The maximum number of iterations
max_iter: 1000
# snapshot intermediate results
snapshot: 500


  1. 现在我们有了训练数据、网络模型、指定了相关训练参数,可以开始训练网络 LetNet-5 了,使用下面的命令:
    $./examples/mnist/train_lenet.sh,训练完成之后,我们得到了一个关于 LetNet-5 在 mnist 数据上的模型 caffemodel

6)使用训练好的模型对数据进行预测,运行下面的代码:
$ ./build/tools/caffe.bin test
-model examples/mnist/lenet_train_test.prototxt
-weights examples/mnist/lenet_iter_1000.caffemodel
-iterations 100

命令行解释:
./build/tools/caffe.bin test,表示只做预测(前向传播计算),不进行参数更新(后向传播计算)
-model examples/mnist/lenet_train_test.prototxt,指定模型描述文本文件
-weights examples/mnist/lenet_iter_1000.caffemodel 指定模型预先训练好的权值文件
-iterations 100,指定测试迭代次数,参与侧测试的样本数目为
(iterations*batch_size), test batch 设置为 100, 所以iterations =100时,刚好覆盖 10000个测试样本。


推荐阅读
  • 在Android平台上利用FFmpeg的Swscale组件实现YUV与RGB格式互转
    本文探讨了在Android平台上利用FFmpeg的Swscale组件实现YUV与RGB格式互转的技术细节。通过详细分析Swscale的工作原理和实际应用,展示了如何在Android环境中高效地进行图像格式转换。此外,还介绍了FFmpeg的全平台编译过程,包括x264和fdk-aac的集成,并在Ubuntu系统中配置Nginx和Nginx-RTMP-Module以支持直播推流服务。这些技术的结合为音视频处理提供了强大的支持。 ... [详细]
  • Go语言实现Redis客户端与服务器的交互机制深入解析
    在前文对Godis v1.0版本的基础功能进行了详细介绍后,本文将重点探讨如何实现客户端与服务器之间的交互机制。通过具体代码实现,使客户端与服务器能够顺利通信,赋予项目实际运行的能力。本文将详细解析Go语言在实现这一过程中的关键技术和实现细节,帮助读者深入了解Redis客户端与服务器的交互原理。 ... [详细]
  • 本文详细介绍了如何在Linux系统中搭建51单片机的开发与编程环境,重点讲解了使用Makefile进行项目管理的方法。首先,文章指导读者安装SDCC(Small Device C Compiler),这是一个专为小型设备设计的C语言编译器,适合用于51单片机的开发。随后,通过具体的实例演示了如何配置Makefile文件,以实现代码的自动化编译与链接过程,从而提高开发效率。此外,还提供了常见问题的解决方案及优化建议,帮助开发者快速上手并解决实际开发中可能遇到的技术难题。 ... [详细]
  • 利用PaddleSharp模块在C#中实现图像文字识别功能测试
    PaddleSharp 是 PaddleInferenceCAPI 的 C# 封装库,适用于 Windows (x64)、NVIDIA GPU 和 Linux (Ubuntu 20.04) 等平台。本文详细介绍了如何使用 PaddleSharp 在 C# 环境中实现图像文字识别功能,并进行了全面的功能测试,验证了其在多种硬件配置下的稳定性和准确性。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • Norton Partition Magic 中 PHP 函数 error_reporting(E_ALL ^ E_NOTICE) 的详细解析与应用
    在 Windows 环境下,通过具体示例分析了 `Norton Partition Magic` 中 `PHP` 函数 `error_reporting(E_ALL ^ E_NOTICE)` 的详细解析与应用。该函数用于控制错误报告级别,例如在从 PHP 4.3.0 升级到 4.3.1 后,程序出现多处错误的原因及解决方法。本文深入探讨了错误报告配置对程序稳定性的影响,并提供了实用的调试技巧。 ... [详细]
  • 在运行时动态获取Entity Framework中的ObjectSet可以通过反射机制实现。这种方法允许开发者在应用程序运行期间根据需要加载不同的实体集合,从而提高代码的灵活性和可扩展性。通过使用`DbContext`类的`Set`方法,结合类型信息,可以轻松地实现这一目标。此外,还可以利用`Type`对象和泛型方法来进一步增强动态性,确保在处理多种实体类型时更加高效和安全。 ... [详细]
  • Spring Boot 实战(一):基础的CRUD操作详解
    在《Spring Boot 实战(一)》中,详细介绍了基础的CRUD操作,涵盖创建、读取、更新和删除等核心功能,适合初学者快速掌握Spring Boot框架的应用开发技巧。 ... [详细]
  • 如何将PHP文件上传至服务器及正确配置服务器地址 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 优化后的标题:PHP分布式高并发秒杀系统设计与实现
    PHPSeckill是一个基于PHP、Lua和Redis构建的高效分布式秒杀系统。该项目利用php_apcu扩展优化性能,实现了高并发环境下的秒杀功能。系统设计充分考虑了分布式架构的可扩展性和稳定性,适用于大规模用户同时访问的场景。项目代码已开源,可在Gitee平台上获取。 ... [详细]
  • 深度森林算法解析:特征选择与确定能力分析
    本文深入探讨了深度森林算法在特征选择与确定方面的能力。提出了一种名为EncoderForest(简称eForest)的创新方法,作为首个基于决策树的编码器模型,它在处理高维数据时展现出卓越的性能,为特征选择提供了新的视角和工具。 ... [详细]
  • 本文详细介绍了在Ubuntu操作系统中使用GDB调试工具深入分析和调试标准库函数`printf`的源代码过程。通过具体步骤和实例,展示了如何设置断点、查看变量值及跟踪函数调用栈,帮助开发者更好地理解`printf`函数的工作原理及其内部实现细节。 ... [详细]
  • PJSIP 编译与开发指南:深入解析 PJSIP 库的应用与优化
    PJSIP 编译与开发指南:深入解析 PJSIP 库的应用与优化 ... [详细]
  • 在Linux环境中,通过编写Shell脚本来实现自定义命令的创建与激活,能够极大地简化服务器上多个子系统的管理操作。例如,通过简单的命令如“tt”,即可快速查看各个应用程序的名称及其运行状态,从而提高系统维护的效率和便捷性。 ... [详细]
author-avatar
天王2502871933
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有