热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Codeforces1335E1:ThreeBlocksPalindrome(easyversion)-ASimpleApproach

题面题意给定一个长度为n的数列定义要求的回文子数列满足下图条件其中x与y可以为0即这个回文子数列可以是数字完全相同的一个子数列也可以是只包含两种数字,且其中一种平均分布在另一种数字

题面

技术图片




题意

给定一个长度为 n 的数列

定义要求的回文子数列满足下图条件

技术图片

其中 x 与 y 可以为 0

即这个回文子数列可以是数字完全相同的一个子数列

也可以是只包含两种数字,且其中一种平均分布在另一种数字的两侧

求出最长的回文子数列长度




解题思路

在输入时往vector里记录下每个数字出现的位置

然后开始枚举位于两侧的数字的种类 i( i = 1 ~ 26 )

首先考虑这个回文子数列只包含一种数字,刚好根据枚举

直接将答案与枚举的字符数量取大(与枚举到的vector[i].size取大)

然后如果出现的次数少于2次,说明不能放在两侧,直接跳过这次枚举

否则,再对每一侧拥有多少个数字 i 进行枚举( j = 1 ~ size/2 )

然后根据贪心可以得知,假设枚举出数字 i 在每一侧出现 j 次的话

那就可以取原数列中最左边 j 个 i 和最右边 j 个 i 作为答案的原位置,再从左数第 j 个 i 的位置 +1 开始,以右数第 j 个 i 的位置 -1 结束,在这段区间内寻找出现最多次的数字 x 作为答案的中间部分,则这种情况的答案就是 j*2+x出现的次数


优化:

(如果用的是RMQ问题的 “静态查找区间内出现最多次数字的次数” 的话可以不需要看这里的优化)

可以发现,在我们枚举 j 的时候,可行的区间永远是连续的

以【 1 1 1 2 1 2 1 1 】,枚举数字 i = 1 时为例

技术图片

图中绿色区域就是每一次我们需要找出现最多次数字时的区间


由图可以得知

如果 j 从小到大枚举,则我们查找的区间会在原来的基础上缩短,即上图从上往下

如果 j 从大到小枚举,则我们查找的区间会在原来的基础上延长,即上图从下往上

所以我们可以在每次枚举 j 时,记录下查找的区间内每种数字出现的个数

在 j 改变时,把两个状态中出现改变的两端区间处理下就可以直接转移

那么这里的时间复杂度就从 O( size/2 * n ) 降为了 O(n)

详见代码




主要部分代码实现

对于枚举 j 时的转移部分

因为状态转移时左右两端都会加上或者减少一段区间

以 j 从大到小枚举为例(代码也是从大到小)

需要先处理中间部分,然后再每次增加两段子区间

所以特殊处理下中间部分

假设当前枚举的数字 i 出现的次数为 cnt

则两端每端最多有 cnt/2 个数字 i ,以 cntt=cnt/2 记录


因为vector中下标从 0 开始

所以实际范围为 0 ~ cnt-1

如果cnt是偶数,则存在两个中位数,分别是 cntt-1 和 cntt ,最开始以这两个位置开始处理即可

而如果cnt是奇数,则中位数只存在一个,因为我们要保证两端的数字个数相同,所以最中间这个数字不能取,所以最开始处理的是 cntt-1 和 cntt+1

发现实际上按照两端数字相同的性质,可以直接采用 cntt-1cnt-cntt 即可,不需要特殊判断奇偶


然后定义数组,寻找第 cntt-1 个数的位置 +1 到第 cnt-cntt 个数的位置 -1 这段范围内的各种数字出现的次数

因为两端个数为 cntt,则此时答案就是 最多次数mx+cntt*2

int num[30]={0},mx=0;
for(int j=v[i][cntt-1]+1;jmx)
        mx=num[j]; //寻找出现次数最大的
ans=max(ans,mx+cntt*2);

然后就可以通过状态转移了

j 从 cntt-1 开始向下枚举到 1

因为 j 代表的就是个数

所以每次增加的区间分别为 第 j-1 个数 到 第 j 个数第 cnt-j-1 个数 到 第 cnt-j 个数

直接加入上面的num数组即可,不需要清零

最后的答案为 mx+j*2

for(int j=cntt-1;j>0;j--)
{
    for(int k=v[i][j-1]+1;kmx)
            mx=num[k];
    ans=max(ans,mx+j*2);
}



完整程序

感觉是纯暴力加上个优化,结果跑得飞快

范围修改下可以直接过hard

(31ms/3000ms)

#include
using namespace std;
int ar[2050];
vector v[30];

void solve()
{
    int n,ans=0;
    cin>>n;
    for(int i=1;i<=26;i++)
        v[i].clear(); //多组数据注意清空
    for(int i=1;i<=n;i++)
    {
        cin>>ar[i];
        v[ar[i]].push_back(i); //记录每个数字出现的位置
    }
    for(int i=1;i<=26;i++) //枚举位于两侧的数字
    {
        int cnt=v[i].size(),cntt;
        ans=max(ans,cnt); //单种数字作为答案的情况

        if(cnt<=1)
            continue; //如果只出现了一次或没出现过,直接continue即可

        cntt=cnt/2; //位于某一侧的数字的最大数量

        int num[30]={0},mx=0;

        for(int j=v[i][cntt-1]+1;jmx)
                mx=num[j]; //寻找出现次数最多的次数
        ans=max(ans,mx+cntt*2); //记录答案

        for(int j=cntt-1;j>0;j--) //然后枚举每一侧的数量
        {
            for(int k=v[i][j-1]+1;kmx)
                    mx=num[k]; //寻找出现次数最多的次数
            ans=max(ans,mx+j*2); //记录答案
        }
    }
    cout<>T;
    for(int t=1;t<=T;t++)
        solve();
    return 0;
}

Codeforces 1335E1 - Three Blocks Palindrome (easy version)


推荐阅读
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • CSS 布局:液态三栏混合宽度布局
    本文介绍了如何使用 CSS 实现液态的三栏布局,其中各栏具有不同的宽度设置。通过调整容器和内容区域的属性,可以实现灵活且响应式的网页设计。 ... [详细]
  • 本文介绍如何在 Xcode 中使用快捷键和菜单命令对多行代码进行缩进,包括右缩进和左缩进的具体操作方法。 ... [详细]
  • 理解存储器的层次结构有助于程序员优化程序性能,通过合理安排数据在不同层级的存储位置,提升CPU的数据访问速度。本文详细探讨了静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)的工作原理及其应用场景,并介绍了存储器模块中的数据存取过程及局部性原理。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
author-avatar
胃热额外_522
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有