热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

CUDASamples:ImageProcess:BGRtoBGR565

图像像素格式BGR565是每一个像素占2个字节,其中Blue占5位,Green占6位,Red占5位。在OpenCV中,BGR

图像像素格式BGR565是每一个像素占2个字节,其中Blue占5位,Green占6位,Red占5位。在OpenCV中,BGR到BGR565的每一个像素的计算公式是:

unsigned short dst &#61; (unsigned short)((B >> 3) | ((G & ~3) <<3) | ((R & ~7) <<8) )

下面分别给出了C&#43;&#43;和CUDA实现的测试代码&#xff0c;如下&#xff1a;

bgr2bgr565.cpp:

#include "funset.hpp"
#include
#include "common.hpp"int bgr2bgr565_cpu(const unsigned char* src, int width, int height, unsigned char* dst, float* elapsed_time)
{TIME_START_CPUfor (int y &#61; 0; y > 3) | ((p1[1] & ~3) <<3) | ((p1[2] & ~7) <<8));}}TIME_END_CPUreturn 0;
}

bgr2bgr565.cu:

#include "funset.hpp"
#include
#include
#include
#include
#include "common.hpp"/* __global__: 函数类型限定符;在设备上运行;在主机端调用,计算能力3.2及以上可以在
设备端调用;声明的函数的返回值必须是void类型;对此类型函数的调用是异步的,即在
设备完全完成它的运行之前就返回了;对此类型函数的调用必须指定执行配置,即用于在
设备上执行函数时的grid和block的维度,以及相关的流(即插入<<<>>>运算符);
a kernel,表示此函数为内核函数(运行在GPU上的CUDA并行计算函数称为kernel(内核函
数),内核函数必须通过__global__函数类型限定符定义);*/
__global__ static void bgr2bgr565(const unsigned char* src, int width, int height, unsigned char* dst)
{/* gridDim: 内置变量,用于描述线程网格的维度,对于所有线程块来说,这个变量是一个常数,用来保存线程格每一维的大小,即每个线程格中线程块的数量.一个grid为三维,为dim3类型&#xff1b;blockDim: 内置变量,用于说明每个block的维度与尺寸.为dim3类型,包含了block在三个维度上的尺寸信息;对于所有线程块来说,这个变量是一个常数,保存的是线程块中每一维的线程数量;blockIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程块的索引;用于说明当前thread所在的block在整个grid中的位置,blockIdx.x取值范围是[0,gridDim.x-1],blockIdx.y取值范围是[0, gridDim.y-1].为uint3类型,包含了一个block在grid中各个维度上的索引信息;threadIdx: 内置变量,变量中包含的值就是当前执行设备代码的线程索引;用于说明当前thread在block中的位置;如果线程是一维的可获取threadIdx.x,如果是二维的还可获取threadIdx.y,如果是三维的还可获取threadIdx.z;为uint3类 型,包含了一个thread在block中各个维度的索引信息 */int x &#61; threadIdx.x &#43; blockIdx.x * blockDim.x;int y &#61; threadIdx.y &#43; blockIdx.y * blockDim.y;//if (x &#61;&#61; 0 && y &#61;&#61; 0) {// printf("%d, %d\n", width, height);//}if (x > 3) | ((p[1] & ~3) <<3) | ((p[2] & ~7) <<8));}
}int bgr2bgr565_gpu(const unsigned char* src, int width, int height, unsigned char* dst, float* elapsed_time)
{unsigned char *dev_src{ nullptr }, *dev_dst{ nullptr };// cudaMalloc: 在设备端分配内存cudaMalloc(&dev_src, width * height * 3 * sizeof(unsigned char));cudaMalloc(&dev_dst, width * height * 2 * sizeof(unsigned char));/* cudaMemcpy: 在主机端和设备端拷贝数据,此函数第四个参数仅能是下面之一:(1). cudaMemcpyHostToHost: 拷贝数据从主机端到主机端(2). cudaMemcpyHostToDevice: 拷贝数据从主机端到设备端(3). cudaMemcpyDeviceToHost: 拷贝数据从设备端到主机端(4). cudaMemcpyDeviceToDevice: 拷贝数据从设备端到设备端(5). cudaMemcpyDefault: 从指针值自动推断拷贝数据方向,需要支持统一虚拟寻址(CUDA6.0及以上版本)cudaMemcpy函数对于主机是同步的 */cudaMemcpy(dev_src, src, width * height * 3 * sizeof(unsigned char), cudaMemcpyHostToDevice);/* cudaMemset: 存储器初始化函数,在GPU内存上执行。用指定的值初始化或设置设备内存 */cudaMemset(dev_dst, 0, width * height * 2 * sizeof(unsigned char));TIME_START_GPU/* dim3: 基于uint3定义的内置矢量类型&#xff0c;相当于由3个unsigned int类型组成的结构体&#xff0c;可表示一个三维数组&#xff0c;在定义dim3类型变量时&#xff0c;凡是没有赋值的元素都会被赋予默认值1 */// Note&#xff1a;每一个线程块支持的最大线程数量为1024&#xff0c;即threads.x*threads.y必须小于等于1024dim3 threads(32, 32);dim3 blocks((width &#43; 31) / 32, (height &#43; 31) / 32);/* <<<>>>: 为CUDA引入的运算符,指定线程网格和线程块维度等,传递执行参数给CUDA编译器和运行时系统,用于说明内核函数中的线程数量,以及线程是如何组织的;尖括号中这些参数并不是传递给设备代码的参数,而是告诉运行时如何启动设备代码,传递给设备代码本身的参数是放在圆括号中传递的,就像标准的函数调用一样;不同计算能力的设备对线程的总数和组织方式有不同的约束;必须先为kernel中用到的数组或变量分配好足够的空间,再调用kernel函数,否则在GPU计算时会发生错误,例如越界等 ;使用运行时API时,需要在调用的内核函数名与参数列表直接以<<>>的形式设置执行配置,其中&#xff1a;Dg是一个dim3型变量,用于设置grid的维度和各个维度上的尺寸.设置好Dg后,grid中将有Dg.x*Dg.y*Dg.z个block;Db是一个dim3型变量,用于设置block的维度和各个维度上的尺寸.设置好Db后,每个block中将有Db.x*Db.y*Db.z个thread;Ns是一个size_t型变量,指定各块为此调用动态分配的共享存储器大小,这些动态分配的存储器可供声明为外部数组(extern __shared__)的其他任何变量使用;Ns是一个可选参数,默认值为0;S为cudaStream_t类型,用于设置与内核函数关联的流.S是一个可选参数,默认值0. */// Note: 核函数不支持传入参数为vector的data()指针&#xff0c;需要cudaMalloc和cudaMemcpy&#xff0c;因为vector是在主机内存中bgr2bgr565 <<> >(dev_src, width, height, dev_dst);/* cudaDeviceSynchronize: kernel的启动是异步的, 为了定位它是否出错, 一般需要加上cudaDeviceSynchronize函数进行同步; 将会一直处于阻塞状态,直到前面所有请求的任务已经被全部执行完毕,如果前面执行的某个任务失败,将会返回一个错误&#xff1b;当程序中有多个流,并且流之间在某一点需要通信时,那就必须在这一点处加上同步的语句,即cudaDeviceSynchronize&#xff1b;异步启动reference: https://stackoverflow.com/questions/11888772/when-to-call-cudadevicesynchronize */cudaDeviceSynchronize();TIME_END_GPUcudaMemcpy(dst, dev_dst, width * height * 2 * sizeof(unsigned char), cudaMemcpyDeviceToHost);// cudaFree: 释放设备上由cudaMalloc函数分配的内存cudaFree(dev_dst);cudaFree(dev_src);return 0;
}

main.cpp:

#include "funset.hpp"
#include
#include
#include
#include
#include
#include
#include "common.hpp"int test_image_process_bgr2bgr565()
{const std::string image_name{ "E:/GitCode/CUDA_Test/test_data/images/lena.png" };cv::Mat mat &#61; cv::imread(image_name, 1);CHECK(mat.data);const int width{ 1513 }, height{ 1473 };cv::resize(mat, mat, cv::Size(width, height));std::unique_ptr data1(new unsigned char[width * height * 2]), data2(new unsigned char[width * height * 2]);float elapsed_time1{ 0.f }, elapsed_time2{ 0.f }; // millisecondscv::Mat bgr565;cv::cvtColor(mat, bgr565, cv::COLOR_BGR2BGR565);CHECK(bgr2bgr565_cpu(mat.data, width, height, data1.get(), &elapsed_time1) &#61;&#61; 0);CHECK(bgr2bgr565_gpu(mat.data, width, height, data2.get(), &elapsed_time2) &#61;&#61; 0);fprintf(stdout, "image bgr to bgr565: cpu run time: %f ms, gpu run time: %f ms\n", elapsed_time1, elapsed_time2);CHECK(compare_result(data1.get(), bgr565.data, width*height * 2) &#61;&#61; 0);CHECK(compare_result(data1.get(), data2.get(), width*height*2) &#61;&#61; 0);return 0;
}

执行结果如下&#xff1a;由结果可得&#xff0c;C&#43;&#43;、CUDA、OpenCV三者的结果是完全一致的。






GitHub&#xff1a; https://github.com/fengbingchun/CUDA_Test


推荐阅读
  • Android源码深入理解JNI技术的概述和应用
    本文介绍了Android源码中的JNI技术,包括概述和应用。JNI是Java Native Interface的缩写,是一种技术,可以实现Java程序调用Native语言写的函数,以及Native程序调用Java层的函数。在Android平台上,JNI充当了连接Java世界和Native世界的桥梁。本文通过分析Android源码中的相关文件和位置,深入探讨了JNI技术在Android开发中的重要性和应用场景。 ... [详细]
  • 本文介绍了深入浅出Linux设备驱动编程的重要性,以及两种加载和删除Linux内核模块的方法。通过一个内核模块的例子,展示了模块的编译和加载过程,并讨论了模块对内核大小的控制。深入理解Linux设备驱动编程对于开发者来说非常重要。 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 如何自行分析定位SAP BSP错误
    The“BSPtag”Imentionedintheblogtitlemeansforexamplethetagchtmlb:configCelleratorbelowwhichi ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • 本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。 ... [详细]
  • 本文介绍了UVALive6575题目Odd and Even Zeroes的解法,使用了数位dp和找规律的方法。阶乘的定义和性质被介绍,并给出了一些例子。其中,部分阶乘的尾零个数为奇数,部分为偶数。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • Linux环境变量函数getenv、putenv、setenv和unsetenv详解
    本文详细解释了Linux中的环境变量函数getenv、putenv、setenv和unsetenv的用法和功能。通过使用这些函数,可以获取、设置和删除环境变量的值。同时给出了相应的函数原型、参数说明和返回值。通过示例代码演示了如何使用getenv函数获取环境变量的值,并打印出来。 ... [详细]
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
  • 预备知识可参考我整理的博客Windows编程之线程:https:www.cnblogs.comZhuSenlinp16662075.htmlWindows编程之线程同步:https ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • Java自带的观察者模式及实现方法详解
    本文介绍了Java自带的观察者模式,包括Observer和Observable对象的定义和使用方法。通过添加观察者和设置内部标志位,当被观察者中的事件发生变化时,通知观察者对象并执行相应的操作。实现观察者模式非常简单,只需继承Observable类和实现Observer接口即可。详情请参考Java官方api文档。 ... [详细]
author-avatar
轻淞猪
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有