热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

利用CIFAR10数据集快速掌握Mixup数据增强技术,显著提高图像分类精度

通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。

CIFAR-10数据集应用:快速入门数据增强方法Mixup,显著提升图像识别准确度

作者|Ta-Ying Cheng,牛津大学博士研究生,Medium技术博主,多篇文章均被平台官方刊物Towards Data Science收录
翻译|颂贤

深度学习蓬勃发展的这几年来,图像分类一直是最为火热的领域之一。传统上的图像识别严重依赖像是扩张/侵蚀或者是频域变换这样的处理方法,但特征提取的困难性限制了这些方法的进步空间。

如今的神经网络则显著提高了图像识别的准确率,因为神经网络能够寻找输入图像和输出标签之间的关系,并以此不断地调整它的识别策略。

然而,神经网络往往需要大量的数据进行训练,而优质的训练数据并不是唾手可得的。因此现在许多人都在研究如何能够实现所谓的数据增强(Data augmentation),即在一个已有的小数据集中凭空增加数据量,来达到以一敌百的效果。

本文就将带大家认识一种简单而有效的数据增强策略Mixup,并介绍直接在PyTorch中实现Mixup的方法。

为什么需要数据增强?

神经网络架构内的参数是根据给定的数据进行训练和更新的。但由于训练数据只覆盖了某一部分可能数据的分布情况,网络很可能就会在分布的“能见”部分过度拟合。

因此,我们拥有的训练数据越多,理论上就越能覆盖整个分布的情况,这也正是为什么以数据为中心的AI(data-centric AI)非常重要。当然,在数据量有限的情况下,我们也并不是没有办法。通过数据增强,我们就可以尝试通过微调原有数据的方式产生新数据,并将其作为“新”样本送入网络进行训练。

什么是Mixup?

图1:Mixup的简易演示图

假设我们现在要做的事情是给猫和狗的图片做分类,并且我们已经有了一组标注好了是猫是狗的数据(例如[1, 0] -> 狗, [0, 1] -> 猫),那么Mixup简单来说就是将两张图像及其标签平均化为一个新数据。

具体而言,我们可以用数学公式写出Mixup的概念:

$$ x = \lambda x_i + ( 1 - \lambda ) (x_j),\\ y = \lambda y_i + ( 1 - \lambda ) (y_j), $$

其中,xy分别是混合xi(标签为yᵢ)和xⱼ(标签为y)后的图像和标签,而λ则是从给定的贝塔分布中取得的随机数。

由此,Mixup能够为我们提供不同数据类别之间的连续数据样本,并因此直接扩大了给定训练集的分布,从而使网络在测试阶段更加强大。

Mixup的万用性

Mixup其实只是一种数据增强方法,它和任何用于分类的网络架构都是正交的。也就是说,我们可以在任何要进行分类任务的网络中对相应的数据集使用Mixup方法。

Mixup的提出者张宏毅等人基于其最初发表的论文《Mixup: Beyond Empirical Risk Minimization》对多个数据集和架构进行了实验,发现了Mixup在神经网络之外的应用中也能体现其强大能力。

计算环境

我们将通过PyTorch(包括torchvision)来构建整个程序。Mixup需要的从beta分布中生成的样本,我们可以从NumPy库中获得。我们还将使用random来为Mixup寻找随机图像。下面的代码能够导入我们需要的所有库:

"""
Import necessary libraries to train a network using mixup
The code is mainly developed using the PyTorch library
"""
import numpy as np
import pickle
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader

数据集

为了演示,我们将用传统的图像分类任务来说明Mixup的强大,那么这种情况下CIFAR-10则会是非常理想的数据集。CIFAR-10包含10个类别的60000张彩色图像(每类6000张),按5:1的比例分为训练和测试集。这些图像分类起来相当简单,但比最基本的数字识别数据集MNIST要难一些。

有许多方法可以下载CIFAR-10数据集,比如多伦多大学网站里就包含了相关数据集。在这里,我推荐大家使用格物钛的公开数据集平台,因为在这个平台上,如果使用他们的SDK,不用下载也可以获取免费的数据集资源。

事实上,这个公开数据集平台包含了行业内数百个知名的优质数据集,每个数据集都有相关的作者说明,以及不同训练任务的标签,例如分类或目标检测。当然,大家也可以在这个平台下载其他分类数据集,如CompCars或SVHN,来测试Mixup在不同场景下的性能。

硬件要求

一般来说,我们最好用GPU(显卡)来训练神经网络,因为它能显著提高训练速度。不过如果只有CPU可用,我们还是可以对程序进行简单测试的。如果你想让程序能够自行确定所需硬件,使用以下代码即可:

"""
Determine if any GPUs are available
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

实现

网络

这里,我们的目标是要测试Mixup的性能,而不是调试网络本身,所以我们只需要简单实现一个4层卷积层和2层全连接层的卷积神经网络(CNN)即可。为了比较使用和不使用Mixup的区别,我们将应用同一个网络来确保比较的准确性。

我们可以使用下列代码来搭建上面所说的简单网络:

"""
Create a simple CNN
"""
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()

        # Network consists of 4 convolutional layers followed by 2 fully-connected layers
        self.conv11 = nn.Conv2d(3, 64, 3)
        self.conv12 = nn.Conv2d(64, 64, 3)
        self.conv21 = nn.Conv2d(64, 128, 3)
        self.conv22 = nn.Conv2d(128, 128, 3)
        self.fc1 = nn.Linear(128 * 5 * 5, 256)
        self.fc2 = nn.Linear(256, 10)
    def forward(self, x):
       x = F.relu(self.conv11(x))
       x = F.relu(self.conv12(x))
       x = F.max_pool2d(x, (2,2))
       x = F.relu(self.conv21(x))
       x = F.relu(self.conv22(x))
       x = F.max_pool2d(x, (2,2))

       # Size is calculated based on kernel size 3 and padding 0
       x = x.view(-1, 128 * 5 * 5)
       x = F.relu(self.fc1(x))
       x = self.fc2(x)

       return nn.Sigmoid()(x)

Mixup

Mixup阶段是在数据集加载过程中完成的,所以我们必须写入我们自己的数据集,而不是使用torchvision.datasets所提供的默认数据集。

下面的代码简单地实现了Mixup,并结合使用了NumPy的贝塔函数。

"""
Dataset and Dataloader creation
All data are downloaded found via Graviti Open Dataset which links to CIFAR-10 official page
The dataset implementation is where mixup take place
"""

class CIFAR_Dataset(Dataset):
    def __init__(self, data_dir, train, transform):
        self.data_dir = data_dir
        self.train = train
        self.transform = transform
        self.data = []
        self.targets = []

        # Loading all the data depending on whether the dataset is training or testing
        if self.train:
            for i in range(5):
                with open(data_dir + 'data_batch_' + str(i+1), 'rb') as f:
                    entry = pickle.load(f, encoding='latin1')
                    self.data.append(entry['data'])
                    self.targets.extend(entry['labels'])
        else:
            with open(data_dir + 'test_batch', 'rb') as f:
                entry = pickle.load(f, encoding='latin1')
                self.data.append(entry['data'])
                self.targets.extend(entry['labels'])

        # Reshape it and turn it into the HWC format which PyTorch takes in the images
        # Original CIFAR format can be seen via its official page
        self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
        self.data = self.data.transpose((0, 2, 3, 1))

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):

        # Create a one hot label
        label = torch.zeros(10)
        label[self.targets[idx]] = 1.

        # Transform the image by converting to tensor and normalizing it
        if self.transform:
            image = transform(self.data[idx])

        # If data is for training, perform mixup, only perform mixup roughly on 1 for every 5 images
        if self.train and idx > 0 and idx%5 == 0:

            # Choose another image/label randomly
            mixup_idx = random.randint(0, len(self.data)-1)
            mixup_label = torch.zeros(10)
            label[self.targets[mixup_idx]] = 1.
            if self.transform:
                mixup_image = transform(self.data[mixup_idx])

            # Select a random number from the given beta distribution
            # Mixup the images accordingly
            alpha = 0.2
            lam = np.random.beta(alpha, alpha)
            image = lam * image + (1 - lam) * mixup_image
            label = lam * label + (1 - lam) * mixup_label

        return image, label

需要注意的是,我们并没有对所有的图像都进行Mixup,而是大概每5张处理1张。我们还使用了一个0.2的贝塔分布。你可以自己为不同的实验改变分布以及被混合的图像的数量,或许你会取得更好的结果!

训练和评估

下面的代码展示的是训练过程。我们将批次大小设置为128,学习率为1e-3,总次数为30次。整个训练进行了两次,唯一区别是有没有使用Mixup。需要注意的是, 损失函数需要由我们自己定义,因为目前BCE损失不允许使用带有小数的标签。

"""
Initialize the network, loss Adam optimizer
Torch BCE Loss does not support mixup labels (not 1 or 0), so we implement our own
"""
net = CNN().to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=LEARNING_RATE)
def bceloss(x, y):
    eps = 1e-6
    return -torch.mean(y * torch.log(x + eps) + (1 - y) * torch.log(1 - x + eps))
best_Acc = 0


"""
Training Procedure
"""
for epoch in range(NUM_EPOCHS):
    net.train()
    # We train and visualize the loss every 100 iterations
    for idx, (imgs, labels) in enumerate(train_dataloader):
        imgs = imgs.to(device)
        labels = labels.to(device)
        preds = net(imgs)
        loss = bceloss(preds, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if idx%100 == 0:
            print("Epoch {} Iteration {}, Current Loss: {}".format(epoch, idx, loss))

    # We evaluate the network after every epoch based on test set accuracy
    net.eval()
    with torch.no_grad():
        total = 0
        numCorrect = 0
        for (imgs, labels) in test_dataloader:
            imgs = imgs.to(device)
            labels = labels.to(device)
            preds = net(imgs)
            numCorrect += (torch.argmax(preds, dim=1) == torch.argmax(labels, dim=1)).float().sum()
            total += len(imgs)
        acc = numCorrect/total
        print("Current image classification accuracy at epoch {}: {}".format(epoch, acc))
        if acc > best_Acc:
            best_Acc = acc

为了评估Mixup的效果,我们进行了三次对照试验来计算最终的准确性。在没有Mixup的情况下,该网络在测试集上的准确率约为74.5%,而在使用了Mixup的情况下,准确率提高到了约76.5%!

图像分类之外

Mixup将图像分类的准确性带到了一个前所未有的高度,但研究表明,Mixup的好处还能延伸到其他计算机视觉任务中,比如对抗性数据的生成和防御。另外也有相关文献在Mixup拓展到三维表示中,目前的结果表明Mixup在这一领域也十分有效的,例如PointMixup。

结语

由此,我们用Mixup做的小实验就大功告成啦!在这篇文章中,我们简单介绍了Mixup的概念并演示了如何在图像分类网络训练中应用Mixup。完整的实现方式可以在这—GitHub仓库中找到。

【关于格物钛】:

格物钛智能科技定位为面向机器学习的数据平台,致力于为 AI 开发者打造下一代新型基础设施,从根本上改变其与非结构化数据的交互方式。我们通过非结构化数据管理工具TensorBay和开源数据集社区Open Datasets,帮助机器学习团队和个人降低数据获取、存储和处理成本,加速 AI开发和产品创新,为人工智能赋能千行百业、驱动产业升级提供坚实基础。


推荐阅读
  • 探讨ChatGPT在法律和版权方面的潜在风险及影响,分析其作为内容创造工具的合法性和合规性。 ... [详细]
  • 为了解决不同服务器间共享图片的需求,我们最初考虑建立一个FTP图片服务器。然而,考虑到项目是一个简单的CMS系统,为了简化流程,团队决定探索七牛云存储的解决方案。本文将详细介绍使用七牛云存储的过程和心得。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 基因组浏览器中的Wig格式解析
    本文详细介绍了Wiggle(Wig)格式及其在基因组浏览器中的应用,涵盖variableStep和fixedStep两种主要格式的特点、适用场景及具体使用方法。同时,还提供了关于数据值和自定义参数的补充信息。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 云函数与数据库API实现增删查改的对比
    本文将深入探讨使用云函数和数据库API实现数据操作(增删查改)的不同方法,通过详细的代码示例帮助读者更好地理解和掌握这些技术。文章不仅提供代码实现,还解释了每种方法的特点和适用场景。 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • IneedtofocusTextCellsonebyoneviaabuttonclick.ItriedlistView.ScrollTo.我需要通过点击按钮逐个关注Tex ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 自己用过的一些比较有用的css3新属性【HTML】
    web前端|html教程自己用过的一些比较用的css3新属性web前端-html教程css3刚推出不久,虽然大多数的css3属性在很多流行的浏览器中不支持,但我个人觉得还是要尽量开 ... [详细]
  • Unity编辑器插件:NGUI资源引用检测工具
    本文介绍了一款基于NGUI的资源引用检测工具,该工具能够帮助开发者快速查找和管理项目中的资源引用。其功能涵盖Atlas/Sprite、字库、UITexture及组件的引用检测,并提供了替换和修复功能。文末提供源码下载链接。 ... [详细]
  • 金山与万普广告争议:APP开发者权益受侵害
    探讨了金山毒霸对嵌入特定广告SDK的APP进行封禁的行为,分析其对安卓开发者的影响,并揭示了这一系列事件背后的复杂性。 ... [详细]
  • 历经三十年的开发,Mathematica 已成为技术计算领域的标杆,为全球的技术创新者、教育工作者、学生及其他用户提供了一个领先的计算平台。最新版本 Mathematica 12.3.1 增加了多项核心语言、数学计算、可视化和图形处理的新功能。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
author-avatar
针箍投药_996
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有