热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

笔记(二)——深度学习基本框架(层和块)

目录一、层和块的定义和初始化1、pytorch中定义Module的方法——nn.Sequential()

目录

一、层和块的定义和初始化

1、pytorch 中定义Module的方法——nn.Sequential()

2、层和快的初始化方法与栗子

二、在ISTA-Net中层和块的定义与应用


一、层和块的定义和初始化

1、pytorch 中定义Module的方法——nn.Sequential()

我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。

任何的层和模型都是Module的子类

import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)

2、层和快的初始化方法与栗子

在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能:

  1. 将输入数据作为其前向传播函数的参数。

  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们下面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的

  4. 存储和访问前向传播计算所需的参数。

  5. 根据需要初始化模型参数。

所有的Module都有两个比较重要的函数:

(1)Init_  我们在这里定义我们需要哪些类,需要哪些参数

class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))

首先调用父类super()._init_()把内部的参数全部设好,之后初始化weight或者其他的就能初始化成功了

self.***定义层, 放在类的成员变量中

因此在这个函数中,我们一般进行初始化过程,即定义一些东西

 在ISTA-Net中,同样使用这种定义方式(上图)。

(2)前向函数forward(self,x)

x是输入,self是python编程中指向自己。

使用的时候可以直接用MLP(或BasicBlock),不需要MLP.forward(), 因为构造函数里面调用了·_call_,可以通过类名直接调用函数


二、在ISTA-Net中层和块的定义与应用

(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的,如图所示

例如在ISTA-Net中,程序定义了9个Phases作为一个网络结构,每次正向传播运算都要经过这一过程,进而预测值。

 

从编程的角度来看,块由(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。 在定义我们自己的块时,由于自动微分(在 2.5节 中引入) 提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。

 

# Define ISTA-Net Block
class BasicBlock(torch.nn.Module):
def __init__(self):
super(BasicBlock, self).__init__()
self.lambda_step = nn.Parameter(torch.Tensor([0.5])) #把这个函数理解为类型转换函数,将一个不可训练的类型Tensor转换成可以训练的类型parameter,并将这个parameter绑定到这个module里面(net.parameter()中就有这个绑定的parameter,所以在参数优化的时候可以进行优化的),所以经过类型转换这个self.v变成了模型的一部分,成为了模型中根据训练可以改动的参数了
#目的是为了让这些参数最优化
self.soft_thr = nn.Parameter(torch.Tensor([0.01])) #软阈值
self.conv1_forward = nn.Parameter(init.xavier_normal_(torch.Tensor(32, 1, 3, 3)))
self.conv2_forward = nn.Parameter(init.xavier_normal_(torch.Tensor(32, 32, 3, 3))) #卷积核,对卷积核里面的参数进行学习
self.conv1_backward = nn.Parameter(init.xavier_normal_(torch.Tensor(32, 32, 3, 3)))
self.conv2_backward = nn.Parameter(init.xavier_normal_(torch.Tensor(1, 32, 3, 3)))
#init.xavier_normal_()在每一层网络保证输入和输出的方差相同
def forward(self, x, y):
x = x - self.lambda_step * x
x = x + self.lambda_step * y
x_input = x.view(-1, 1, 33, 33) #通道数=1,图像的shape是33乘33的
x = F.conv2d(x_input, self.conv1_forward, padding=1) #输入样本与卷积核进行2D卷积,外加1圈padding
x = F.relu(x) #校正单元
x_forward = F.conv2d(x, self.conv2_forward, padding=1)
x = torch.mul(torch.sign(x_forward), F.relu(torch.abs(x_forward) - self.soft_thr)) #张量中每个元素相乘
x = F.conv2d(x, self.conv1_backward, padding=1)
x = F.relu(x)
x_backward = F.conv2d(x, self.conv2_backward, padding=1)
x_pred = x_backward.view(-1, 1089)
x = F.conv2d(x_forward, self.conv1_backward, padding=1)
x = F.relu(x)
x_est = F.conv2d(x, self.conv2_backward, padding=1)
symloss = x_est - x_input
return [x_pred, symloss]


推荐阅读
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 使用 Jupyter Notebook 实现 Markdown 编写与代码运行
    Jupyter Notebook 是一个开源的基于网页的应用程序,允许用户在同一文档中编写 Markdown 文本和运行多种编程语言的代码,并实时查看运行结果。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在Conda环境中高效配置并安装PyTorch和TensorFlow GPU版的方法如下:首先,创建一个新的Conda环境以避免与基础环境发生冲突,例如使用 `conda create -n pytorch_gpu python=3.7` 命令。接着,激活该环境,确保所有依赖项都正确安装。此外,建议在安装过程中指定CUDA版本,以确保与GPU兼容性。通过这些步骤,可以确保PyTorch和TensorFlow GPU版的顺利安装和运行。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 基于OpenCV的图像拼接技术实践与示例代码解析
    图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 在Python编程中,掌握高级技巧对于提升代码效率和可读性至关重要。本文重点探讨了生成器和迭代器的应用,这两种工具不仅能够优化内存使用,还能简化复杂数据处理流程。生成器通过按需生成数据,避免了大量数据加载对内存的占用,而迭代器则提供了一种优雅的方式来遍历集合对象。此外,文章还深入解析了这些高级特性的实际应用场景,帮助读者更好地理解和运用这些技术。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 探讨了在HTML表单中使用元素代替进行表单提交的方法。 ... [详细]
  • 最适合初学者的编程语言
    本文探讨了适合编程新手的最佳语言选择,包括Python、JavaScript等易于上手且功能强大的语言,以及如何通过有效的学习方法提高编程技能。 ... [详细]
  • 本文详细解析了MySQL中常见的几种错误,并提供了具体的解决方法,帮助开发者快速定位和解决问题。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 本文探讨了如何利用RxJS库在AngularJS应用中实现对用户单击和拖动操作的精确区分,特别是在调整区域大小的场景下。 ... [详细]
author-avatar
twinklezai750
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有