热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

背包问题应用详解:全面解析与实例分析

背包问题不仅是一个基础的算法挑战,更是一类广泛存在的优化问题的典型代表。这类问题实质上属于0-1线性规划范畴,其核心在于通过一系列约束条件来最大化或最小化目标函数。自2007年dd_engi发布《背包问题》一文以来,该领域得到了深入的研究和广泛应用。本文将详细解析背包问题的基本概念、求解方法及其实际应用场景,帮助读者全面理解这一重要课题。

1. 背包问题介绍

背包问题不单单是一个简单的算法问题,它本质上代表了一大类问题,这类问题实际上是01线性规划问题,其约束条件和目标函数如下:
自从dd_engi在2007年推出《背包问题九讲》之后,背包问题的主要精髓基本已道尽。本文没有尝试对背包问题的本质进行扩展或深入挖掘,而只是从有限的理解(这里指对《背包问题九讲》的理解)出发,帮助读者更快地学习《背包问题九讲》中的提到的各种背包问题的主要算法思想,并通过实例解释了相应的算法,同时给出了几个背包问题的经典应用。

2. 背包问题及应用

dd_engi在《背包问题九讲》中主要提到四种背包问题,分别为:01背包问题,完全背包问题,多重背包问题,二维费用背包问题。本节总结了这几种背包问题,并给出了其典型的应用以帮助读者理解这几种问题的本质。

2.1 01背包问题

(1)问题描述

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

(2)状态转移方程

其中,f(i,v) 表示从前i件物品选择若干物品装到容量为v的背包中产生的最大价值。当v=0时,f(i,v)初始化为0,表示题目不要求背包一定刚好装满,而f(i,v)=inf/-inf(正无穷或负无穷)表示题目要求背包一定要刚好装满。下面几种背包类似,以后不再赘述。

(3) 伪代码

从转移方程上可以看出,前i个物品的最优解只依赖于前i-1个物品最优解,而与前i-2,i-3,…各物品最优无直接关系,可以利用这个特点优化存储空间,即只申请一个一维数组即可,算法时间复杂度(O(VN))为:

for i=1..N

  for v=V..0

    f[v]=max{f[v],f[v-c[i]]+w[i]};

注意v的遍历顺序!!!

下面几种背包用到类似优化,以后不再赘述。

(4) 举例

V=10,N=3,c[]={3,4,5}, w={4,5,6}

(1)背包不一定装满

计算顺序是:从右往左,自上而下:

(2)背包刚好装满

计算顺序是:从右往左,自上而下。注意初始值,其中-inf表示负无穷

(5) 经典题型

[1] 你有一堆石头质量分别为W1,W2,W3…WN.(W<=100000,N <30)现在需要你将石头合并为两堆,使两堆质量的差为最小。

[2] 给一个整数的集合,要把它分成两个集合,要两个集合的数的和最接近

[3] 有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0小于n≤30),每个物品有一个体积(正整数)。要求从n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

2.2 完全背包问题

(1)问题描述

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

(2)状态转移方程

或者:

(3) 伪代码

for i=1..N

  for v=0..V

    f[v]=max{f[v],f[v-c[i]]+w[i]};

注意v的遍历顺序!!!

注意,时间复杂度仍为:O(VN).

(4) 举例

V=10,N=3,c[]={3,4,5}, w={4,5,6}

(1)背包不一定装满

计算顺序是:从左往右,自上而下:

(2)背包刚好装满

计算顺序是:从左往右,自上而下。注意初始值,其中-inf表示负无穷

(5) 经典题型

[1] 找零钱问题:有n种面额的硬币,每种硬币无限多,至少用多少枚硬币表示给定的面值M?

2.3 多重背包问题

(1)问题描述

有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

(2)状态转移方程

(3) 解题思想

用以下方法转化为普通01背包问题:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,…,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种 物品分成系数分别为1,2,4,6的四件物品。这种方法能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示。这个很容易证明,证明过程中用到以下定理:任何一个整数n均可以表示成:n=a0*2^0+a1*2^1+…+ak*2^k,其中ak=0或者1(实际上就是n的二进制分解),

定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-2^k+1(k是满足n-2^k+1>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-2^k+1中某几个数的和的形式。

该定理的证明如下:

(1) 数列1,2,4,…,2^(k-1),n-2^k+1中所有元素的和为n,所以若干元素的和的范围为:[1, n];

(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.

(3)如果t>=2^k,设s=n-2^k+1,则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式。

(证毕!)

该算法的时间复杂度为:O(V*sum(logn[i])).

(4) 经典题型

[1] 找零钱问题:有n种面额的硬币,分别为a[0], a[1],…, a[n-1],每种硬币的个数为b[0], b[1],…, b[n-1],至少用多少枚硬币表示给定的面值M?

2.4 二维费用背包

(1) 问题描述

二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问 怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种 背包容量)分别为V和U。物品的价值为w[i]。

(2) 状态转移方程

(3) 算法思想

采用同一维情况类似的方法求解

(4) 经典题型

有2n个整数,平均分成两组,每组n个数,使这两组数的和最接近。

3. 背包总结

背包问题实际上代表的是线性规划问题,一般要考虑以下几个因素已决定选取什么样的算法:

(1) 约束条件,有一个还是两个或者更多个,如果是一个,可能是01背包,完全背包或者多重背包问题,如果有两个约束条件,则可能是二维背包问题。

(2) 优化目标,求最大值,还是最小值,还是总数(只需将max换成sum)

(3) 每种物品的个数限制,如果每种物品只有一个,只是简单的01背包问题,如果个数无限制,则是完全背包问题,如果每种物品的个数有限制,则是多重背包问题。

(4) 背包是否要求刚好塞满,注意不塞满和塞满两种情况下初始值不同。

4. 参考资料

dd_engi:《背包问题九讲》,available:http://www.oiers.cn/pack/Index.html

———————————————————————————————-

更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总

———————————————————————————————-

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/structure/knapsack-problems/


推荐阅读
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 算法学习心得与经验总结
    在算法学习的过程中,我总结了一些宝贵的心得和经验。本文将重点探讨莫比乌斯反演技巧的应用,并提供详细的实例解析。通过不断的学习和实践,我逐步掌握了这一复杂但强大的工具。此外,文章还将分享一些实用的学习资源和参考资料,帮助读者更好地理解和应用这些算法。希望本文能为算法学习者提供有价值的参考和指导。 ... [详细]
  • 当前物联网领域十大核心技术解析:涵盖哪些关键技术?
    经过近十年的技术革新,物联网已悄然渗透到日常生活中,对社会产生了深远影响。本文将详细解析当前物联网领域的十大核心关键技术,包括但不限于:1. 军事物联网技术,该技术通过先进的感知设备实现战场环境的实时监测与数据传输,提升作战效能和决策效率。其他关键技术还包括传感器网络、边缘计算、大数据分析等,这些技术共同推动了物联网的快速发展和广泛应用。 ... [详细]
  • C# .NET 4.1 版本大型信息化系统集成平台中的主从表事务处理标准示例
    在C# .NET 4.1版本的大型信息化系统集成平台中,本文详细介绍了主从表事务处理的标准示例。通过确保所有操作要么全部成功,要么全部失败,实现主表和关联子表的同步插入。主表插入时会返回当前生成的主键,该主键随后用于子表插入时的关联。以下是一个示例代码片段,展示了如何在一个数据库事务中同时添加角色和相关用户。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • 本文总结了JavaScript的核心知识点和实用技巧,涵盖了变量声明、DOM操作、事件处理等重要方面。例如,通过`event.srcElement`获取触发事件的元素,并使用`alert`显示其HTML结构;利用`innerText`和`innerHTML`属性分别设置和获取文本内容及HTML内容。此外,还介绍了如何在表单中动态生成和操作``元素,以便更好地处理用户输入。这些技巧对于提升前端开发效率和代码质量具有重要意义。 ... [详细]
  • JavaScript XML操作实用工具类:XmlUtilsJS技巧与应用 ... [详细]
  • Java解析YAML文件并转换为JSON格式(支持JSON与XML的结构化查询)
    本文探讨了如何利用Java解析YAML文件并将其转换为JSON格式,同时支持JSON和XML的结构化查询。YAML、JSON和XML这三种数据格式通过其名称作为文件扩展名,便于区分和使用。文章详细介绍了这些格式的层次结构和数据表示方法,并重点讨论了在数据传输过程中,XML的特性和优势。此外,还提供了具体的代码示例和实现步骤,帮助开发者高效地进行数据格式转换和查询操作。 ... [详细]
  • 在编程笔试和面试中,全排列算法因其适中的难度而备受青睐,不仅能够考察应聘者的算法基础,还能测试其对递归和回溯的理解。本文将深入解析全排列算法的实现原理,探讨其应用场景,并提供优化建议,帮助读者更好地掌握这一重要算法。 ... [详细]
  • 本文对常见的字符串哈希函数进行了全面分析,涵盖了BKDRHash、APHash、DJBHash、JSHash、RSHash、SDBMHash、PJWHash和ELFHash等多种算法。这些哈希函数在不同的应用场景中表现出各异的性能特点,通过对比其算法原理、计算效率和碰撞概率,为实际应用提供了有价值的参考。 ... [详细]
  • 2018年9月21日,Destoon官方发布了安全更新,修复了一个由用户“索马里的海贼”报告的前端GETShell漏洞。该漏洞存在于20180827版本的某CMS中,攻击者可以通过构造特定的HTTP请求,利用该漏洞在服务器上执行任意代码,从而获得对系统的控制权。此次更新建议所有用户尽快升级至最新版本,以确保系统的安全性。 ... [详细]
  • 在解决区间相关问题时,我发现自己经常缺乏有效的思维方式,即使是简单的题目也常常需要很长时间才能找到解题思路,而一旦得到提示便能迅速理解。题目要求对一个包含n个元素的数组进行操作,并给出一个参数k,具体任务是…… ... [详细]
  • Golomb 编码是一种高效的变长编码技术,专门用于整数的压缩。该方法通过预定义的参数 \( M \) 将输入整数分解为商 \( q \) 和余数 \( r \) 两部分。具体而言,输入整数除以 \( M \) 得到商 \( q \) 和余数 \( r \),其中商 \( q \) 采用一元编码表示,而余数 \( r \) 则使用二进制编码。这种编码方式在数据压缩和信息传输中具有显著的优势,特别是在处理具有特定概率分布的数据时表现出色。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 题目链接:http://codeforces.com/gym/101190/attachments题意:在一个共享三轮车站点,某些用户需要租用车辆。该问题涉及如何通过离线查询和排序优化策略来高效地管理和分配车辆资源。具体来说,需要设计一种算法,在满足所有用户需求的同时,最小化总等待时间和资源浪费。通过合理的数据结构和算法优化,可以显著提高系统的整体性能和用户体验。 ... [详细]
author-avatar
政儒思贤丽正
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有