热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

百度飞桨架构师手把手带你零基础实践深度学习——

百度飞桨架构师手把手带你零基础实践深度学习——打卡计划【8.13打卡作业】下面给出课程链接,欢迎各位小伙来来报考!本帖将持续更新。我只是飞桨的搬运工话不多说,这么良心的课程赶快扫

百度飞桨架构师手把手带你零基础实践深度学习——打卡计划

  • 【8.13打卡作业】

下面给出课程链接,欢迎各位小伙来来报考!本帖将持续更新。我只是飞桨的搬运工

在这里插入图片描述

话不多说,这么良心的课程赶快扫码上车!https://aistudio.baidu.com/aistudio/education/group/info/1297?activityId=5&directly=1&shared=1


【8.13打卡作业】

查询API文档,写一个cifar-10数据集的数据读取器,并执行乱序,分批次读取,打印第一个batch数据的shape、类型信息。

【作业内容】

✓代码跑通 请大家根据课上所学内容,补全代码,保证程序跑通。

【评分标准】

✓代码运行成功且有结果(打印第一个batch数据的shape类型信息),100分

#加载飞桨和相关类库
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
import numpy as np
import os
from PIL import Image
import random
import matplotlib.pyplot as plt
%matplotlib inline

data=paddle.dataset.cifar.train10()
data=paddle.reader.shuffle(data,8)
train_reader = paddle.batch(data, batch_size=8)

def data_loader():for index,data in enumerate(train_reader()):if index==0:img=np.array([x[0] for x in(data)]).astype('float32')label=np.array([x[1] for x in(data)]).astype('float32')print('batch_images_shape:{}'.format(img.shape))print('one_image_shape:{}'.format(img[0].shape))print('label_shape:{}'.format(label.shape))return img,label

img,label=data_loader()

在这里插入图片描述


推荐阅读
  • 技术分享:线性回归模型的双路径构建——基于sklearn库的实践探索
    技术分享:线性回归模型的双路径构建——基于sklearn库的实践探索 ... [详细]
  • 在第七天的深度学习课程中,我们将重点探讨DGL框架的高级应用,特别是在官方文档指导下进行数据集的下载与预处理。通过详细的步骤说明和实用技巧,帮助读者高效地构建和优化图神经网络的数据管道。此外,我们还将介绍如何利用DGL提供的模块化工具,实现数据的快速加载和预处理,以提升模型训练的效率和准确性。 ... [详细]
  • voc生成xml 代码
    目录 lxmlwindows安装 读取示例 可视化 生成示例 上面是代码,下面有调用示例 api调用代码,其实只有几行:这个生成代码也很简 ... [详细]
  • 使用PyQt5与OpenCV实现电脑摄像头的图像捕捉功能
    本文介绍了如何使用Python中的PyQt5和OpenCV库来实现电脑摄像头的图像捕捉功能。通过结合这两个强大的工具,用户可以轻松地打开摄像头并进行实时图像采集和处理。代码示例展示了如何初始化摄像头、捕获图像并将其显示在PyQt5的图形界面中。此外,还提供了详细的步骤说明和代码注释,帮助开发者快速上手并实现相关功能。 ... [详细]
  • 开发技巧分享:利用套索与矩形选择工具高效选取绘图中的全部字形节点
    开发技巧分享:利用套索与矩形选择工具高效选取绘图中的全部字形节点 ... [详细]
  • Java 8 引入了 Stream API,这一新特性极大地增强了集合数据的处理能力。通过 Stream API,开发者可以更加高效、简洁地进行集合数据的遍历、过滤和转换操作。本文将详细解析 Stream API 的核心概念和常见用法,帮助读者更好地理解和应用这一强大的工具。 ... [详细]
  • Android目录遍历工具 | AppCrawler自动化测试进阶(第二部分):个性化配置详解
    终于迎来了“足不出户也能为社会贡献力量”的时刻,但有追求的测试工程师绝不会让自己的生活变得乏味。与其在家消磨时光,不如利用这段时间深入研究和提升自己的技术能力,特别是对AppCrawler自动化测试工具的个性化配置进行详细探索。这不仅能够提高测试效率,还能为项目带来更多的价值。 ... [详细]
  • 本文详细介绍了图表图例的语法与配置方法,包括如何通过 `loc` 参数设置图例的位置。具体位置选项包括:'best'(自动选择最佳位置)、'upper right'、'upper left'、'lower left' 和 'lower right' 等。此外,还探讨了其他高级配置选项,如图例的字体大小、边框样式和透明度等,以帮助用户更好地定制图表图例。 ... [详细]
  • 开发笔记:校园商铺系统中店铺注册功能模块的Controller层优化与重构
    开发笔记:校园商铺系统中店铺注册功能模块的Controller层优化与重构 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • Python 并发编程进阶:从初学者到高手的进程与模块开发指南
    Python 并发编程进阶:从初学者到高手的进程与模块开发指南 ... [详细]
  • 在财务分析与金融数据处理中,利用Python的强大库如NumPy和SciPy可以高效地计算各种财务指标。例如,通过调用这些库中的函数,可以轻松计算货币的时间价值,包括终值(FV)等关键指标。此外,这些库还提供了丰富的统计和数学工具,有助于进行更深入的数据分析和模型构建。 ... [详细]
  • 决策树在鸢尾花数据集上对不同特征组合的分类效果分析及模型性能比较
    本文探讨了决策树算法在鸢尾花数据集上的应用,分析了不同特征组合对分类效果的影响,并对模型性能进行了详细比较。决策树作为一种层次化的分类方法,通过递归地划分特征空间,形成树状结构,每个节点代表一个特征判断,最终达到分类目的。研究结果表明,不同特征组合对模型性能有显著影响,为实际应用提供了重要参考。 ... [详细]
  • 世界人工智能大赛OCR赛题方案!
     Datawhale干货 作者:阿水,北京航空航天大学,Datawhale成员本文以世界人工智能创新大赛(AIWIN)手写体OCR识别竞赛为实践背景,给出了OCR实践的常见思路和流 ... [详细]
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
author-avatar
拾_间
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有