热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

BZOJ2839:集合计数(容斥,组合数学)

Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

Solution

首先考虑一下容斥
设$f(k)$表示选出一些集合使它们交集大小至少为$k$的方案数。
那么$f(k)=C_n^k \times (2^{2^{n-k}}-1)$
这玩意儿怎么理解呢?也就是先把那$i$个数确定下来,然后有$2^{n-k}$个集合可以包含那$k$个数。这些集合要么选要么不选,但不能一个都不选,也就是不能为空集。所以有$2^{2^{n-k}}-1$种选择方法。
那么容斥系数呢?可以发现当计算交集至少为$k$的方案时候,交集至少为$j$的方案($j>k$)会被计算$C_j^k$次。
也就是说,
$f(k)$的系数为$1$。
$f(k+1)$的系数为$-C_{k+1}^k$。
$f(k+2)$的系数为$-C_{k+2}^k+C_{k+1}^k\times C_{k+2}^{k+1}=C_{k+2}^k$
为什么$f(k+2)$能那么推呢……因为$C_N^M\times C_M^S=C_N^S\times C_{N-S}^{N-M}$
搞到现在基本可以组合计数搞搞出解了,至于那个大的一比的$2^{2^{n-k}}$,根据欧拉定理直接指数取模$φ(MOD)$就好了,显然$φ(MOD)=MOD-1$。

Code

 1 #include
 2 #include
 3 #define N (1000009)
 4 #define LL long long
 5 #define MOD (1000000007)
 6 using namespace std;
 7 
 8 LL n,k,ans,inv[N],fac[N],facinv[N],p[N];
 9 
10 void Init()
11 {
12     inv[1]=fac[0]=facinv[0]=p[0]=1;
13     for (int i=1; i<=n; ++i)
14     {
15         if (i!=1) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
16         fac[i]=fac[i-1]*i%MOD; facinv[i]=facinv[i-1]*inv[i]%MOD;
17         p[i]=p[i-1]*2%(MOD-1);
18     }
19 }
20 
21 LL Qpow(LL a,LL b)
22 {
23     LL ans=1;
24     while (b)
25     {
26         if (b&1) ans=ans*a%MOD;
27         a=a*a%MOD; b>>=1;
28     }
29     return ans;
30 }
31 
32 LL C(LL n,LL m)
33 {
34     if (nreturn 0;
35     return fac[n]*facinv[m]%MOD*facinv[n-m]%MOD;
36 }
37 
38 int main()
39 {
40     scanf("%lld%lld",&n,&k);
41     Init();
42     for (int i=k,j=1; i<=n; ++i,j=-j)
43         ans+=j*C(n,i)*(Qpow(2,p[n-i])-1)%MOD*C(i,k)%MOD;
44     ans=(ans%MOD+MOD)%MOD;
45     printf("%lld\n",ans);
46 }

推荐阅读
  • 编程解析:CF989C 花朵之雾 (构造算法)
    本文深入探讨了CF989C '花朵之雾'问题的构造算法,提供了详细的解题思路和代码实现。 ... [详细]
  • 题目描述:Balala Power! 时间限制:4000/2000 MS (Java/Other) 内存限制:131072/131072 K (Java/Other)。题目背景及问题描述详见正文。 ... [详细]
  • ArcBlock 发布 ABT 节点 1.0.31 版本更新
    2020年11月9日,ArcBlock 区块链基础平台发布了 ABT 节点开发平台的1.0.31版本更新,此次更新带来了多项功能增强与性能优化。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • 该问题描述了以不同价格购买三种类型的鸡(公鸡、母鸡和小鸡),使用100元恰好购买100只鸡的不同组合。具体而言,每只公鸡价值5元,每只母鸡价值3元,而每三只小鸡价值1元。问题是,如何用100元购买100只鸡,并找出所有可能的公鸡、母鸡和小鸡的组合。 ... [详细]
  • 本文详细介绍如何在SSM(Spring + Spring MVC + MyBatis)框架中实现分页功能。包括分页的基本概念、数据准备、前端分页栏的设计与实现、后端分页逻辑的编写以及最终的测试步骤。 ... [详细]
  • 本文基于Java官方文档进行了适当修改,旨在介绍如何实现一个能够同时处理多个客户端请求的服务端程序。在前文中,我们探讨了单客户端访问的服务端实现,而本篇将深入讲解多客户端环境下的服务端设计与实现。 ... [详细]
  • 1、编写一个Java程序在屏幕上输出“你好!”。programmenameHelloworld.javapublicclassHelloworld{publicst ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 服务器虚拟化存储设计,完美规划储存与资源,部署高性能虚拟化桌面
    规划部署虚拟桌面环境前,必须先估算目前所使用实体桌面环境的工作负载与IOPS性能,并慎选储存设备。唯有谨慎估算贴近实际的IOPS性能,才能 ... [详细]
  • 本文针对HDU 1042 N! 问题提供详细的解析和代码实现。题目要求计算给定整数N(0 ≤ N ≤ 10000)的阶乘N!。文章不仅提供了算法思路,还附上了C++语言的具体实现。 ... [详细]
  • 本报告记录了嵌入式软件设计课程中的第二次实验,主要探讨了使用KEIL V5开发环境和ST固件库进行GPIO控制及按键响应编程的方法。通过实际操作,加深了对嵌入式系统硬件接口编程的理解。 ... [详细]
  • 本文分享了作者在使用LaTeX过程中的几点心得,涵盖了从文档编辑、代码高亮、图形绘制到3D模型展示等多个方面的内容。适合希望深入了解LaTeX高级功能的用户。 ... [详细]
  • 笔记说明重学前端是程劭非(winter)【前手机淘宝前端负责人】在极客时间开的一个专栏,每天10分钟,重构你的前端知识体系& ... [详细]
  • 探讨了在HTML表单中使用元素代替进行表单提交的方法。 ... [详细]
author-avatar
不乱于心丨不困于丶情
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有