题目描述:
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + ... nK^P
where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to belarger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for iL>bL
If there is no solution, simple output "Impossible".
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
题目思路:
递归搜索出所有的情况(注意减枝),输出数字和最大的一组即可。
题目代码:
#include
#include
#include
using namespace std;
int n, k, p;
int ans[405];
int sum = 0,cnt = 0;
vectorv[100000];
void dfs(int cur, int num){
// 退出条件
if(sum > n || cur > k) return ;
if(sum == n){
if(cur == k){ // 符合条件的结果
for(int i = 0; i =1 ;i--){
int temp = 1;
for(int j = 0; j maxsum){
maxsum = cursum;
maxid = i;
}
}
// 答案输出
printf("%d = ",n);
for(int i = 0; i