热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AOJ.863分配书籍问题(深度优先搜索算法)

题目解析给定n个人和n种书籍,每个人都有一个包含自己喜好的书籍列表。目标是计算出满足以下条件的分配方案数量:1.每个人都必须获得他们喜欢的书籍;2.每本书只能分配给一个人。通过使用深度优先搜索算法,可以系统地探索所有可能的分配组合,确保每个分配方案都符合上述条件。该方法能够有效地处理这类组合优化问题,找到所有可行的解。

题意分析

现有n个人,n种书,给出每人对n种书的喜欢列表,求有多少种方案满足以下条件:

1.每个人都分得自己喜欢的书;
2.每个人分得书的种类各不相同,即所有种类的书均得到分配

1.采用生成测试法
生成过程
对于每个人来说,枚举每本书的状态(0/1),有2^20;
最多有20个人 ,则有20*2^20 = 10*2^21 ≈ 10^3 * 10 ^3 * 10 = 10^ 7
考虑上测试的时间,TLE。

2.优化
充分利用题目中给的信息,即每个人对不同书的喜爱我们是已知的。对于每个人来说,我们不需要枚举全部书籍的状态,只需要枚举他喜爱的每本书的状态,即从他喜欢的书籍中选一本给他,然后再看下一个人,再从这个人喜爱的书籍中选一本给他…… 直到所有人都分得书籍。然后再检查是否所有的书籍都得到分配,若是,ans++,否则继续枚举下一种分配情况。


代码总览

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 0x3f3f3f3f
#define nmax 25
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
vector<int> v[nmax];
bool bookvisit[nmax];
bool peoplevisit[nmax];
int ans &#61; 0,n;
bool check()
{for(int i &#61; 0; iif(!bookvisit[i] || !peoplevisit[i])return false;}return true;
}
void dfs(int peo)
{if(peo &#61;&#61; n){if(check()) ans&#43;&#43;;return;}peoplevisit[peo] &#61; true;for(int i &#61; 0; iif(!bookvisit[v[peo][i]]){bookvisit[v[peo][i]] &#61; true;dfs(peo&#43;1);bookvisit[v[peo][i]] &#61; false;}}
}
void init()
{MEM(peoplevisit);MEM(bookvisit);ans &#61; 0;
}
int main()
{//freopen("in.txt","r",stdin);char str[nmax];while(scanf("%d",&n)!&#61; EOF){init();for(int i &#61;0 ;iscanf("%s",str);for(int j &#61; 0;j<strlen(str);&#43;&#43;j)if(str[j] &#61;&#61; &#39;1&#39;) v[i].push_back(j);}dfs(0);printf("%d\n",ans);}return 0;
}

推荐阅读
  • 经过两天的努力,终于成功解决了半平面交模板题POJ3335的问题。原来是在`OnLeft`函数中漏掉了关键的等于号。通过这次训练,不仅加深了对半平面交算法的理解,还提升了调试和代码实现的能力。未来将继续深入研究计算几何的其他核心问题,进一步巩固和拓展相关知识。 ... [详细]
  • 洛谷 P4035 [JSOI2008] 球形空间生成器(高斯消元法 / 模拟退火算法)
    本文介绍了洛谷 P4035 [JSOI2008] 球形空间生成器问题的解决方案,主要使用了高斯消元法和模拟退火算法。通过这两种方法,可以高效地求解多维空间中的球心位置。文章提供了详细的算法模板和实现代码,适用于 ACM 竞赛和其他相关应用场景。数据范围限制在 10 以内,确保了算法的高效性和准确性。 ... [详细]
  • 探讨如何在Go语言中高效地处理大规模切片的去重操作,特别是针对百万级数据量的场景。 ... [详细]
  • 本报告对2018年湘潭大学程序设计竞赛在牛客网上的时间数据进行了详细分析。通过统计参赛者在各个时间段的活跃情况,揭示了比赛期间的编程频率和时间分布特点。此外,报告还探讨了选手在准备过程中面临的挑战,如保持编程手感、学习逆向工程和PWN技术,以及熟悉Linux环境等。这些发现为未来的竞赛组织和培训提供了 valuable 的参考。 ... [详细]
  • 浏览器作为我们日常不可或缺的软件工具,其背后的运作机制却鲜为人知。本文将深入探讨浏览器内核及其版本的演变历程,帮助读者更好地理解这一关键技术组件,揭示其内部运作的奥秘。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 在C++程序中,文档A的每一行包含一个结构体数据,其中某些字段可能包含不同数量的数字。需要将这些结构体数据逐行读取并存储到向量中,随后不仅在控制台上显示,还要输出到新创建的文档B中。希望得到指导,感谢! ... [详细]
  • 在2019年寒假强化训练中,我们深入探讨了二分算法的理论与实践应用。问题A聚焦于使用递归方法实现二分查找。具体而言,给定一个已按升序排列且无重复元素的数组,用户需从键盘输入一个数值X,通过二分查找法判断该数值是否存在于数组中。输入的第一行为一个正整数,表示数组的长度。这一训练不仅强化了对递归算法的理解,还提升了实际编程能力。 ... [详细]
  • 本文深入解析了 Kuangbin 数学训练营中的经典问题——Ekka Dokka,并通过详细的代码示例和数学推导,探讨了该问题的多种解法及其应用场景。通过对算法的优化和扩展,本文旨在为读者提供全面的理解和实用的参考。 ... [详细]
  • 本文深入探讨了佩尔方程 \( x^2 - dy^2 = 1 \) 的递推关系式。通过构造特定的矩阵并利用矩阵快速幂的方法,可以高效地计算出该方程的第 k 组解。此外,文章还详细分析了递推关系式的数学背景及其在数论中的应用,为相关研究提供了坚实的理论基础。 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • [转]doc,ppt,xls文件格式转PDF格式http:blog.csdn.netlee353086articledetails7920355确实好用。需要注意的是#import ... [详细]
  • 本文介绍如何使用 Python 的 DOM 和 SAX 方法解析 XML 文件,并通过示例展示了如何动态创建数据库表和处理大量数据的实时插入。 ... [详细]
  • 本文是Java并发编程系列的开篇之作,将详细解析Java 1.5及以上版本中提供的并发工具。文章假设读者已经具备同步和易失性关键字的基本知识,重点介绍信号量机制的内部工作原理及其在实际开发中的应用。 ... [详细]
  • 在iOS开发中,基于HTTPS协议的安全网络请求实现至关重要。HTTPS(全称:HyperText Transfer Protocol over Secure Socket Layer)是一种旨在提供安全通信的HTTP扩展,通过SSL/TLS加密技术确保数据传输的安全性和隐私性。本文将详细介绍如何在iOS应用中实现安全的HTTPS网络请求,包括证书验证、SSL握手过程以及常见安全问题的解决方法。 ... [详细]
author-avatar
mobiledu2502858407
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有