热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AI算法工程师从入门到上瘾

设定一个非常清晰的目标清晰的目标就比如说你要做NLP,你要知道NLP的应用有智能问答,机器翻译,搜索引擎等等。然后如果你要做智能问答你要知道现在最发达的技术是深度学习,使用的算法有
设定一个非常清晰的目标

清晰的目标就比如说你要做NLP,你要知道NLP的应用有智能问答,机器翻译,搜索引擎等等。然后如果你要做智能问答你要知道现在最发达的技术是深度学习,使用的算法有RNN/LSTM/Seq2Seq/等等一系列。而我的清晰目标是在实习的时候给我的任务。当任务很明确的时候,所需要的语言就明确了,所要学习的算法也就明确了,很多东西就顺理成章了不用一头乱撞了。

机器学习是人工智能的一种,深度学习是机器学习的一种。学AI先学机器学习。

《AI算法工程师-从入门到上瘾》
理论知识对于AI算法工程师极其重要。敲代码只是思路的一个实现过程。这里的“算法”和计算机CS的“算法”还不太一样,AI算法是偏数学推导的,所以数学底子还是需要点的,学的越深,要求越高。面试的时候,很少让手写代码,90%都是在问模型抠算法细节

按照数据集有没有Y值可以将机器学习分为监督学习、半监督学习和无监督学习。监督学习是分类算法,无监督学习是聚类算法。
《AI算法工程师-从入门到上瘾》

机器学习如何入门

机器学习的三大块:传统的机器学习ML、图像处理CV、自然语言处理NLP
首先推荐一个入门神器:

ML入门该参加的赛题(Titanic)
《AI算法工程师-从入门到上瘾》
图像入门该参加的赛题(数字识别)
《AI算法工程师-从入门到上瘾》
NLP入门该参加的赛题(情感分析、quora问句语义匹配)
《AI算法工程师-从入门到上瘾》
《AI算法工程师-从入门到上瘾》

自学如何寻找学习资料?

1、Kaggle(www.kaggle.com)

这是一个世界级的最权威的机器学习比赛,已被谷歌收购。赛题覆盖传统机器学习、nlp、图像处理等,而且都是很实际的问题,来自各行各业。kaggle是数一数二完善的ML社区了,赛题开放的数据集就很有用,非常适合新手练手。对优秀的kaggler也提供工作机会。
上面的赛题不仅很有代表性,还有很多免费的优秀的数据集供你使用,要知道收集数据是机器学习的第一大难题,它就帮你解决了。入门不用立马参加比赛,把数据下载下来,尽情折腾就好了,要是没有思路,去网上搜别人的解题笔记和代码借鉴一下也很美好~因为这是大家都争相打榜的比赛,所以你并不孤单。

2、github(www.github.com)

3、StackOverFlow(www.stackoverflow.com)

代码报错找它,代码不会敲找它!所有与代码相关的坑,基本都有人踩过啦

4、csdn(www.csdn.net)

最接地气的博客聚集地,最常看的网页之一,一般用来搜索细节知识点或者代码报错时

5、sklearn(scikit-learn.org/stable)

专业做机器学习100年!各算法各技巧的例子code应有尽有

6、medium(medium.com)

创办人是Twitter的创始人,推崇优质内容,国内很多AI公众大号的搬运都来自于这里,medium里每个作者都有自己独特的见解,值得学习和开拓眼界,需要科学上网

7、towards data science(towardsdatascience.com)

与medium很像,需要科学上网

8、google AI blog(ai.googleblog.com)

谷歌的AI团队维护的博客,每天至少更新一篇技术博客。刚在上海开的谷歌开发者大会宣布将会免费开放机器学习课程,值得关注一下,毕竟是AI巨头

有口碑的AI公开课平台

  • coursera(www.coursera.org/browse)

  • 吴恩达(Andrew Ng)机器学习

  • deeplearning.ai(www.deeplearning.ai)

  • fast.ai(www.fast.ai)

    专注于深度学习。Fast.ai的创始人就蛮有意思的,是横扫kaggle图像处理的高手,不摆架子,也不故弄玄虚。中心思想就是深度学习很简单,不要怕。fast.ai有博客和社区。Jeremy和Rachel鼓励撰写博客,构建项目,在会议中进行讨论等活动,以实力来代替传统证书的证明作用。

  • udacity(in.udacity.com)

    有中文版,课程覆盖编程基础,机器学习,深度学习等。

  • 网易云课堂

实用的小技巧

浏览器首推 chrome
搜索问题一定用google,如果没解决是你的问题不是google的锅


推荐阅读
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 智能投顾机器人:创业者如何应对新挑战?
    随着智能投顾技术在二级市场的兴起,针对一级市场的智能投顾也逐渐崭露头角。近日,一款名为阿尔妮塔的人工智能创投机器人正式发布,它将如何改变投资人的工作方式和创业者的融资策略? ... [详细]
  • NVIDIA Titan RTX深度评测
    NVIDIA的Titan RTX被誉为当前最强大的桌面显卡之一,其卓越的性能和高昂的价格吸引了众多专业人士和技术爱好者的关注。本文将详细介绍Titan RTX的技术规格、性能表现及应用场景。 ... [详细]
  • 2017年苹果全球开发者大会即将开幕,预计iOS将迎来重大更新,同时Siri智能音箱有望首次亮相,AI技术成为大会焦点。 ... [详细]
  • LambdaMART算法详解
    本文详细介绍了LambdaMART算法的背景、原理及其在信息检索中的应用。首先回顾了LambdaMART的发展历程,包括其前身RankNet和LambdaRank,然后深入探讨了LambdaMART如何结合梯度提升决策树(GBDT)和LambdaRank来优化排序问题。 ... [详细]
  • 在互联网信息爆炸的时代,当用户需求模糊或难以通过精确查询表达时,推荐系统成为解决信息过载的有效手段。美团作为国内领先的O2O平台,通过深入分析用户行为,运用先进的机器学习技术优化推荐算法,提升用户体验。 ... [详细]
  • 全能终端工具推荐:高效、免费、易用
    介绍一款备受好评的全能型终端工具——MobaXterm,它不仅功能强大,而且完全免费,适合各类用户使用。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
  • libsodium 1.0.15 发布:引入重大不兼容更新
    最新发布的 libsodium 1.0.15 版本带来了若干不兼容的变更,其中包括默认密码散列算法的更改和其他重要调整。 ... [详细]
  • 本文探讨了如何在 PHP 的 Eloquent ORM 中实现数据表之间的关联查询,并通过具体示例详细解释了如何将关联数据嵌入到查询结果中。这不仅提高了数据查询的效率,还简化了代码逻辑。 ... [详细]
author-avatar
ciaos
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有