热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AI技术大盘点:神经网络/机器学习/深度学习/大数据…你想知道的都在这些图里了

在过去的几个月里,我一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望

在过去的几个月里,我一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望对你们有用

 

机器学习

Scikit-learn 算法

这张图可以帮助你找到正确的估计器,这应该是机器学习汇总最难的部分。下面的流程图可以帮助快速查找文档,并对每种估计器做了大致的介绍,有助你更快了解问题并找到解决方案。

 

Scikit-learn(学名scikits.learn)是一个免费的机器学习Python编程语言库。包括了各类分类、回归与聚类算法,并支持向量机、随机森林、梯度提升、 K-means和DBSCAN。它还可以与Python NumPy和SciPy进行交互。

 

Microsoft Azure 算法

这个微软Azure的机器学习表可以帮助你为预测分析方案选择合适的机器学习算法。首先根据数据的性质,匹配最佳算法。

 

用于数据科学的Python

 

TensorFlow

今年5月,Google宣布在第二代TPU和Google计算引擎中加入对TPU的支持。第二代TPU拥有高达180 teraflops的性能。当 64个TPU组合在一起时,可以提供高达11.5千万亿次的浮点运算性能。

 

Keras

今年,Google也在TensorFlow的核心库中支持Keras。Chollet认为比起端到端的机器学习框架,Keras更应作为一个接口。它提供的是更高级别、更直观的抽象集,使得无论后端科学计算库是什么,都可以轻松地配置神经网络。

 

Numpy

NumPy 是针对Python中的一个非优化的字节码解释器——CPython的参考实现。针对这一版本的Python编写数学算法的运行速度相对较慢的问题,Numpy 使用的是多维数组和函数与运算符来改写部分代码,从而提高运行的效率。

 

Pandas

“Pandas”的名字源于“Panel Data”,是多维结构化数据集的计量经济学术语。

 

数据预处理

数据预处理(data wrangler)一词已经开始渗透进了流行文化中。今年的电影“金刚·”中,演员Marc Evan Jackson饰演的角色Steve Woodward正是被介绍为——我们的数据处理者。

用 Dplyr 与 Tidyr 进行数据预处理

 

SciPy

SciPy 是基于NumPy数组对象构建的,是NumPy堆栈的一部分,包括 Matplotlib,pandas和SymPy 等工具,以及扩展的科学计算库集。该NumPy 堆栈与其他应用程序(比如MATLAB,GNU Octave 和 Scilab)用户差不多。NumPy堆栈有时也被称为SciPy堆栈。

 

Matplotlib

Matplotlib是Python编程语言及其数学数学扩展NumPy的绘图库,提供了面向对象的API,用于使用 Tkinter、wxPython、Qt或GTK +等通用GUI工具包将图形嵌入到应用程序中。还有一个基于状态机(如OpenGL)的程序 “pylab”接口,很像MATLAB,但不鼓励使用。

Pyplot 是matplotlib的一个模块,提供了一个类似MATLAB的界面。Pyplot 跟MATLAB一样容易上手,兼容Pyhton还是免费的~

 

数据可视化


更多资料文章请关注v号:程序猿休闲娱乐会所



推荐阅读
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 信用评分卡的Python实现与评估
    本文介绍如何使用Python构建和评估信用评分卡模型,涵盖数据预处理、模型训练及验证指标选择。附带详细代码示例和视频教程链接。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
author-avatar
兆华2502940257
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有