热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

AI技术大盘点:神经网络/机器学习/深度学习/大数据…你想知道的都在这些图里了

在过去的几个月里,我一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望

在过去的几个月里,我一直在专注于整理归纳AI的各类小要点。在被越来越多的朋友同事问及时,我决定将这些总结和心得的完整版分享给大家。为了增加内容的趣味性和可读性,我也在每个主题下面加了些注解,希望对你们有用

 

机器学习

Scikit-learn 算法

这张图可以帮助你找到正确的估计器,这应该是机器学习汇总最难的部分。下面的流程图可以帮助快速查找文档,并对每种估计器做了大致的介绍,有助你更快了解问题并找到解决方案。

 

Scikit-learn(学名scikits.learn)是一个免费的机器学习Python编程语言库。包括了各类分类、回归与聚类算法,并支持向量机、随机森林、梯度提升、 K-means和DBSCAN。它还可以与Python NumPy和SciPy进行交互。

 

Microsoft Azure 算法

这个微软Azure的机器学习表可以帮助你为预测分析方案选择合适的机器学习算法。首先根据数据的性质,匹配最佳算法。

 

用于数据科学的Python

 

TensorFlow

今年5月,Google宣布在第二代TPU和Google计算引擎中加入对TPU的支持。第二代TPU拥有高达180 teraflops的性能。当 64个TPU组合在一起时,可以提供高达11.5千万亿次的浮点运算性能。

 

Keras

今年,Google也在TensorFlow的核心库中支持Keras。Chollet认为比起端到端的机器学习框架,Keras更应作为一个接口。它提供的是更高级别、更直观的抽象集,使得无论后端科学计算库是什么,都可以轻松地配置神经网络。

 

Numpy

NumPy 是针对Python中的一个非优化的字节码解释器——CPython的参考实现。针对这一版本的Python编写数学算法的运行速度相对较慢的问题,Numpy 使用的是多维数组和函数与运算符来改写部分代码,从而提高运行的效率。

 

Pandas

“Pandas”的名字源于“Panel Data”,是多维结构化数据集的计量经济学术语。

 

数据预处理

数据预处理(data wrangler)一词已经开始渗透进了流行文化中。今年的电影“金刚·”中,演员Marc Evan Jackson饰演的角色Steve Woodward正是被介绍为——我们的数据处理者。

用 Dplyr 与 Tidyr 进行数据预处理

 

SciPy

SciPy 是基于NumPy数组对象构建的,是NumPy堆栈的一部分,包括 Matplotlib,pandas和SymPy 等工具,以及扩展的科学计算库集。该NumPy 堆栈与其他应用程序(比如MATLAB,GNU Octave 和 Scilab)用户差不多。NumPy堆栈有时也被称为SciPy堆栈。

 

Matplotlib

Matplotlib是Python编程语言及其数学数学扩展NumPy的绘图库,提供了面向对象的API,用于使用 Tkinter、wxPython、Qt或GTK +等通用GUI工具包将图形嵌入到应用程序中。还有一个基于状态机(如OpenGL)的程序 “pylab”接口,很像MATLAB,但不鼓励使用。

Pyplot 是matplotlib的一个模块,提供了一个类似MATLAB的界面。Pyplot 跟MATLAB一样容易上手,兼容Pyhton还是免费的~

 

数据可视化


更多资料文章请关注v号:程序猿休闲娱乐会所



推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 理工科男女不容错过的神奇资源网站
    十一长假即将结束,你的假期学习计划进展如何?无论你是在家中、思念家乡,还是身处异国他乡,理工科学生都不容错过一些神奇的资源网站。这些网站提供了丰富的学术资料、实验数据和技术文档,能够帮助你在假期中高效学习和提升专业技能。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 在多线程并发环境中,普通变量的操作往往是线程不安全的。本文通过一个简单的例子,展示了如何使用 AtomicInteger 类及其核心的 CAS 无锁算法来保证线程安全。 ... [详细]
  • 本文对比了杜甫《喜晴》的两种英文翻译版本:a. Pleased with Sunny Weather 和 b. Rejoicing in Clearing Weather。a 版由 alexcwlin 翻译并经 Adam Lam 编辑,b 版则由哈佛大学的宇文所安教授 (Prof. Stephen Owen) 翻译。 ... [详细]
  • 帝国CMS中的信息归档功能详解及其重要性
    本文详细解析了帝国CMS中的信息归档功能,并探讨了其在内容管理中的重要性。通过归档功能,用户可以有效地管理和组织大量内容,提高网站的运行效率和用户体验。此外,文章还介绍了如何利用该功能进行数据备份和恢复,确保网站数据的安全性和完整性。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 基于OpenCV的图像拼接技术实践与示例代码解析
    图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。 ... [详细]
  • 浅层神经网络解析:本文详细探讨了两层神经网络(即一个输入层、一个隐藏层和一个输出层)的结构与工作原理。通过吴恩达教授的课程,读者将深入了解浅层神经网络的基本概念、参数初始化方法以及前向传播和反向传播的具体实现步骤。此外,文章还介绍了如何利用这些基础知识解决实际问题,并提供了丰富的实例和代码示例。 ... [详细]
author-avatar
兆华2502940257
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有