热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

5分钟学会gRPC

5分钟学会gRPC-介绍我猜测大部分长期使用Java的开发者应该较少会接触gRPC,毕竟在Java圈子里大部分使用的还是DubboSpringClound这两类服务框架。我也是
介绍

我猜测大部分长期使用 Java 的开发者应该较少会接触 gRPC,毕竟在 Java 圈子里大部分使用的还是 Dubbo/SpringClound 这两类服务框架。

我也是近段时间有机会从零开始重构业务才接触到 gRPC 的,当时选择 gRPC 时也有几个原因:

  • 基于云原生的思路开发部署项目,而在云原生中 gRPC 几乎已经是标准的通讯协议了。
  • 开发语言选择了 Go,在 Go 圈子中 gRPC 显然是更好的选择。
  • 公司内部有部分业务使用的是 Python 开发,在多语言兼容性上 gRPC 支持的非常好。

经过线上一年多的平稳运行,可以看出 gRPC 还是非常稳定高效的;rpc 框架中最核心的几个要点:

  • 序列化
  • 通信协议
  • IDL(接口描述语言)

这些在 gRPC 中分别对应的是:

  • 基于 Protocol Buffer 序列化协议,性能高效。
  • 基于 HTTP/2 标准协议开发,自带 stream、多路复用等特性;同时由于是标准协议,第三方工具的兼容性会更好(比如负载均衡、监控等)
  • 编写一份 .proto 接口文件,便可生成常用语言代码。
HTTP/2

学习 gRPC 之前首先得知道它是通过什么协议通信的,我们日常不管是开发还是应用基本上接触到最多的还是 HTTP/1.1 协议。

由于 HTTP/1.1 是一个文本协议,对人类非常友好,相反的对机器性能就比较低。

需要反复对文本进行解析,效率自然就低了;要对机器更友好就得采用二进制,HTTP/2 自然做到了。

除此之外还有其他优点:

  • 多路复用:可以并行的收发消息,互不影响
  • HPACK 节省 header 空间,避免 HTTP1.1 对相同的 header 反复发送。
Protocol

gRPC 采用的是 Protocol 序列化,发布时间比 gRPC 早一些,所以也不仅只用于 gRPC,任何需要序列化 IO 操作的场景都可以使用它。

它会更加的省空间、高性能;之前在开发 https://github.com/crossoverJie/cim 时就使用它来做数据交互。

package order.v1;

service OrderService{

  rpc Create(OrderApiCreate) returns (Order) {}

  rpc Close(CloseApiCreate) returns (Order) {}

  // 服务端推送
  rpc ServerStream(OrderApiCreate) returns (stream Order) {}

  // 客户端推送
  rpc ClientStream(stream OrderApiCreate) returns (Order) {}

  // 双向推送
  rpc BdStream(stream OrderApiCreate) returns (stream Order) {}
}

message OrderApiCreate{
  int64 order_id = 1;
  repeated int64 user_id = 2;
  string remark = 3;
  repeated int32 reason_id = 4;
}

使用起来也是非常简单的,只需要定义自己的 .proto 文件,便可用命令行工具生成对应语言的 SDK。

具体可以参考官方文档:
https://grpc.io/docs/languages/go/generated-code/

调用
    protoc --go_out=. --go_opt=paths=source_relative \
    --go-grpc_out=. --go-grpc_opt=paths=source_relative \
    test.proto


生成代码之后编写服务端就非常简单了,只需要实现生成的接口即可。

func (o *Order) Create(ctx context.Context, in *v1.OrderApiCreate) (*v1.Order, error) {
    // 获取 metadata
    md, ok := metadata.FromIncomingContext(ctx)
    if !ok {
        return nil, status.Errorf(codes.DataLoss, "failed to get metadata")
    }
    fmt.Println(md)
    fmt.Println(in.OrderId)
    return &v1.Order{
        OrderId: in.OrderId,
        Reason:  nil,
    }, nil
}

客户端也非常简单,只需要依赖服务端代码,创建一个 connection 然后就和调用本地方法一样了。

这是经典的 unary(一元)调用,类似于 http 的请求响应模式,一个请求对应一次响应。

Server stream

gRPC 除了常规的 unary 调用之外还支持服务端推送,在一些特定场景下还是很有用的。

func (o *Order) ServerStream(in *v1.OrderApiCreate, rs v1.OrderService_ServerStreamServer) error {
    for i := 0; i <5; i++ {
        rs.Send(&v1.Order{
            OrderId: in.OrderId,
            Reason:  nil,
        })
    }
    return nil
}

服务端的推送如上所示,调用 Send 函数便可向客户端推送。

    for {
        msg, err := rpc.RecvMsg()
        if err == io.EOF {
            marshalIndent, _ := json.MarshalIndent(msgs, "", "\t")
            fmt.Println(msg)
            return
        }
    }

客户端则通过一个循环判断当前接收到的数据包是否已经截止来获取服务端消息。

为了能更直观的展示这个过程,优化了之前开发的一个 gRPC 客户端,可以直观的调试 stream 调用。

上图便是一个服务端推送示例。

Client Stream

除了支持服务端推送之外,客户端也支持。

客户端在同一个连接中一直向服务端发送数据,服务端可以并行处理消息。


// 服务端代码
func (o *Order) ClientStream(rs v1.OrderService_ClientStreamServer) error {
    var value []int64
    for {
        recv, err := rs.Recv()
        if err == io.EOF {
            rs.SendAndClose(&v1.Order{
                OrderId: 100,
                Reason:  nil,
            })
            log.Println(value)
            return nil
        }
        value = append(value, recv.OrderId)
        log.Printf("ClientStream receiv msg %v", recv.OrderId)
    }
    log.Println("ClientStream finish")
    return nil
}

    // 客户端代码
    for i := 0; i <5; i++ {
        messages, _ := GetMsg(data)
        rpc.SendMsg(messages[0])
    }
    receive, err := rpc.CloseAndReceive()

代码与服务端推送类似,只是角色互换了。

Bidirectional Stream

同理,当客户端、服务端同时都在发送消息也是支持的。

// 服务端
func (o *Order) BdStream(rs v1.OrderService_BdStreamServer) error {
    var value []int64
    for {
        recv, err := rs.Recv()
        if err == io.EOF {
            log.Println(value)
            return nil
        }
        if err != nil {
            panic(err)
        }
        value = append(value, recv.OrderId)
        log.Printf("BdStream receiv msg %v", recv.OrderId)
        rs.SendMsg(&v1.Order{
            OrderId: recv.OrderId,
            Reason:  nil,
        })
    }
    return nil
}
// 客户端
    for i := 0; i <5; i++ {
        messages, _ := GetMsg(data)
        // 发送消息
        rpc.SendMsg(messages[0])
        // 接收消息
        receive, _ := rpc.RecvMsg()
        marshalIndent, _ := json.MarshalIndent(receive, "", "\t")
        fmt.Println(string(marshalIndent))
    }
    rpc.CloseSend()

其实就是将上诉两则合二为一。

通过调用示例很容易理解。

元数据

gRPC 也支持元数据传输,类似于 HTTP 中的 header

    // 客户端写入
    metaStr := `{"lang":"zh"}`
    var m map[string]string
    err := json.Unmarshal([]byte(metaStr), &m)
    md := metadata.New(m)
    // 调用时将 ctx 传入即可
    ctx := metadata.NewOutgoingContext(context.Background(), md)

    // 服务端接收
    md, ok := metadata.FromIncomingContext(ctx)
    if !ok {
        return nil, status.Errorf(codes.DataLoss, "failed to get metadata")
    }
    fmt.Println(md) 

gRPC gateway

gRPC 虽然功能强大使用也很简单,但对于浏览器、APP的支持还是不如 REST 应用广泛(浏览器也支持,但应用非常少)。

为此社区便创建了 https://github.com/grpc-ecosystem/grpc-gateway 项目,可以将 gRPC 服务暴露为 RESTFUL API。

为了让测试可以习惯用 postman 进行接口测试,我们也将 gRPC 服务代理出去,更方便的进行测试。

反射调用

作为一个 rpc 框架,泛化调用也是必须支持的,可以方便开发配套工具;gRPC 是通过反射支持的,通过拿到服务名称、pb 文件进行反射调用。

https://github.com/jhump/protoreflect 这个库封装了常见的反射操作。

上图中看到的可视化 stream 调用也是通过这个库实现的。

负载均衡

由于 gRPC 是基于 HTTP/2 实现的,客户端和服务端会保持长连接;这时做负载均衡就不像是 HTTP 那样简单了。

而我们使用 gRPC 想达到效果和 HTTP 是一样的,需要对请求进行负载均衡而不是连接。

通常有两种做法:

  • 客户端负载均衡
  • 服务端负载均衡

客户端负载均衡在 rpc 调用中应用广泛,比如 Dubbo 就是使用的客户端负载均衡。

gRPC 中也提供有相关接口,具体可以参考官方demo。

https://github.com/grpc/grpc-go/blob/87eb5b7502/examples/features/load_balancing/README.md

客户端负载均衡相对来说对开发者更灵活(可以自定义适合自己的策略),但相对的也需要自己维护这块逻辑,如果有多种语言那就得维护多份。

所以在云原生这个大基调下,更推荐使用服务端负载均衡。

可选方案有:

  • istio
  • envoy
  • apix

这块我们也在研究,大概率会使用 envoy/istio

总结

gRPC 内容还是非常多的,本文只是作为一份入门资料希望能让不了解 gRPC 的能有一个基本认识;这在云原生时代确实是一门必备技能。

对文中的 gRPC 客户端感兴趣的朋友,可以参考这里的源码:
https://github.com/crossoverJie/ptg


推荐阅读
  • 交换机配置:intg100unshintvlani1ipadd192.168.56.177qstelseuser-iv4authaaaproinsshupl3qsshuserpyt ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 实用正则表达式有哪些
    小编给大家分享一下实用正则表达式有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下 ... [详细]
  • 本文介绍如何从字符串中移除大写、小写、特殊、数字和非数字字符,并提供了多种编程语言的实现示例。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • Symfony是一个功能强大的PHP框架,以其依赖注入(DI)特性著称。许多流行的PHP框架如Drupal和Laravel的核心组件都基于Symfony构建。本文将详细介绍Symfony的安装方法及其基本使用。 ... [详细]
  • 为了解决不同服务器间共享图片的需求,我们最初考虑建立一个FTP图片服务器。然而,考虑到项目是一个简单的CMS系统,为了简化流程,团队决定探索七牛云存储的解决方案。本文将详细介绍使用七牛云存储的过程和心得。 ... [详细]
  • 本文介绍百度AI Studio这一集成开发平台,涵盖丰富的AI教程、经典数据集及云端计算资源。通过具体示例——在AI Studio上构建线性回归项目,帮助初学者快速掌握其核心功能与操作方法。 ... [详细]
  • 前言无论是对于刚入行工作还是已经工作几年的java开发者来说,面试求职始终是你需要直面的一件事情。首先梳理自己的知识体系,针对性准备,会有事半功倍的效果。我们往往会把重点放在技术上 ... [详细]
  • 在Windows命令行中,通过Conda工具可以高效地管理和操作虚拟环境。具体步骤包括:1. 列出现有虚拟环境:`conda env list`;2. 创建新虚拟环境:`conda create --name 环境名`;3. 删除虚拟环境:`conda env remove --name 环境名`。这些命令不仅简化了环境管理流程,还提高了开发效率。此外,Conda还支持环境文件导出和导入,方便在不同机器间迁移配置。 ... [详细]
  • 了解_Istio是啥?一文带你彻底了解!
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Istio是啥?一文带你彻底了解!相关的知识,希望对你有一定的参考价值。 ... [详细]
  • 深入理解Java字符串池机制
    本文详细解析了Java中的字符串池(String Pool)机制,探讨其工作原理、实现方式及其对性能的影响。通过具体的代码示例和分析,帮助读者更好地理解和应用这一重要特性。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 本文介绍了 Python 的 Pmagick 库中用于图像处理的木炭滤镜方法,探讨其功能和用法,并通过实例演示如何应用该方法。 ... [详细]
  • Python自动化测试入门:Selenium环境搭建
    本文详细介绍如何在Python环境中安装和配置Selenium,包括开发工具PyCharm的安装、Python环境的设置以及Selenium包的安装方法。此外,还提供了编写和运行第一个自动化测试脚本的步骤。 ... [详细]
author-avatar
暗恋达志_227
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有