热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

51nod1183编辑距离

1183 编辑距离基准时间限制:1 秒空间限制:131072 KB分值: 0 难度:基础题收藏关注1183 编辑距离基准时间限制:1 秒空间限制:131072 KB分值: 0 难度
1183 编辑距离技术分享图片
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
技术分享图片 收藏
技术分享图片 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
 
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3

dp[i][j]表示字符串a中i个字符变换到字符串b中j个字符的编辑距离
#include
#include
#include
using namespace std;
char s1[1010],s2[1010];
int dp[1010][1010];
int main() {
    scanf("%s%s",s1,s2);
    int n=strlen(s1),m=strlen(s2);
    for(int i=0;i<1010;i++) dp[0][i] = dp[i][0] = i;
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=m;j++) {
            dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1, dp[i-1][j-1] + (s1[i-1]!=s2[j-1]) ));
            //printf("%d ",dp[i][j]);
        }
        //printf("\n");
    }
    printf("%d\n",dp[n][m]);
    return 0;
}

51nod1183 编辑距离


推荐阅读
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • importjava.io.*;importjava.util.*;publicclass五子棋游戏{staticintm1;staticintn1;staticfinalintS ... [详细]
  • 本文探讨了程序员这一职业的本质,认为他们是专注于问题解决的专业人士。文章深入分析了他们的日常工作状态、个人品质以及面对挑战时的态度,强调了编程不仅是一项技术活动,更是个人成长和精神修炼的过程。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 在日常生活中,支付宝已成为不可或缺的支付工具之一。本文将详细介绍如何通过支付宝实现免费提现,帮助用户更好地管理个人财务,避免不必要的手续费支出。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 项目风险管理策略与实践
    本文探讨了项目风险管理的关键环节,包括风险管理规划、风险识别、风险分析(定性和定量)、风险应对策略规划及风险控制。旨在通过系统的方法提升项目成功率,减少不确定因素对项目的影响。 ... [详细]
  • 如何在PHP中安装Xdebug扩展
    本文介绍了如何从PECL下载并编译安装Xdebug扩展,以及如何配置PHP和PHPStorm以启用调试功能。 ... [详细]
  • 在处理大数据量的SQL分页查询时,通常需要执行两次查询来分别获取数据和总记录数。本文介绍了一种优化方法,通过单次查询同时返回分页数据和总记录数,从而提高查询效率。 ... [详细]
  • 本文通过一个具体的实例,介绍如何利用TensorFlow框架来计算神经网络模型在多分类任务中的Top-K准确率。代码中包含了随机种子设置、模拟预测结果生成、真实标签生成以及准确率计算等步骤。 ... [详细]
  • 嵌套列表的扁平化处理
    本文介绍了一种方法,用于遍历嵌套列表中的每个元素。如果元素是整数,则将其添加到结果数组中;如果元素是一个列表,则递归地遍历这个列表。此方法特别适用于处理复杂数据结构中的嵌套列表。 ... [详细]
  • 本文详细探讨了BCTF竞赛中窃密木马题目的解题策略,重点分析了该题目在漏洞挖掘与利用方面的技巧。 ... [详细]
  • 1#include2#defineM1000103#defineRGregister4#defineinf0x3f3f3f3f5usingnamespacestd;6boolrev ... [详细]
author-avatar
你送的指环_526
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有