作者:Jacky麦麦9 | 来源:互联网 | 2023-10-13 11:34
先谈谈闭锁和栅栏的区别:
1.关键区别在于,所有线程必须同时到达栅栏位置,才能继续执行。
2.闭锁用于等待某一个事件的发生,举例:CountDownLatch中await方法等待计数器为零时,所有事件才可继续执行。而栅栏是等待其他线程到位,所有事件才可继续下一步。例如:几个家庭决定在某个地方集合:“所有人6:00在麦当劳碰头,到了以后要等其他人,之后再讨论下一步要做的事情”。
Semaphore(闭锁)
这个东西和之前的synchronized干的事差不多。
synchronized保证了,我管理的那部分代码同一时刻只有一个线程能访问
Semaphore保证了,我管理的那部分代码同一时刻最多可以有n个线程访问
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore; public class SemaphoreTest { public static void main(String[] args) { ExecutorService service &#61; Executors.newCachedThreadPool(); final Semaphore sp &#61; new Semaphore(3); for(int i&#61;0;i<10;i&#43;&#43;){ Runnable runnable &#61; new Runnable(){ public void run(){ try { sp.acquire(); } catch (InterruptedException e1) { e1.printStackTrace(); } System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "进入&#xff0c;当前已有" &#43; (3-sp.availablePermits()) &#43; "个并发"); try { Thread.sleep((long)(Math.random()*10000)); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "即将离开"); sp.release(); //下面代码有时候执行不准确&#xff0c;因为其没有和上面的代码合成原子单元 System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "已离开&#xff0c;当前已有" &#43; (3-sp.availablePermits()) &#43; "个并发"); } }; service.execute(runnable); } } }
运行结果如下&#xff1a;
线程pool-1-thread-2进入&#xff0c;当前已有2个并发
线程pool-1-thread-1进入&#xff0c;当前已有2个并发
线程pool-1-thread-3进入&#xff0c;当前已有3个并发
线程pool-1-thread-1即将离开
线程pool-1-thread-1已离开&#xff0c;当前已有2个并发
线程pool-1-thread-4进入&#xff0c;当前已有3个并发
线程pool-1-thread-3即将离开
线程pool-1-thread-3已离开&#xff0c;当前已有2个并发
线程pool-1-thread-5进入&#xff0c;当前已有3个并发
线程pool-1-thread-2即将离开
线程pool-1-thread-2已离开&#xff0c;当前已有2个并发
线程pool-1-thread-6进入&#xff0c;当前已有3个并发
线程pool-1-thread-4即将离开
线程pool-1-thread-4已离开&#xff0c;当前已有2个并发
线程pool-1-thread-7进入&#xff0c;当前已有3个并发
线程pool-1-thread-5即将离开
线程pool-1-thread-5已离开&#xff0c;当前已有2个并发
线程pool-1-thread-8进入&#xff0c;当前已有3个并发
线程pool-1-thread-8即将离开
线程pool-1-thread-9进入&#xff0c;当前已有3个并发
线程pool-1-thread-8已离开&#xff0c;当前已有3个并发
线程pool-1-thread-6即将离开
线程pool-1-thread-6已离开&#xff0c;当前已有2个并发
线程pool-1-thread-10进入&#xff0c;当前已有3个并发
线程pool-1-thread-10即将离开
线程pool-1-thread-10已离开&#xff0c;当前已有2个并发
线程pool-1-thread-7即将离开
线程pool-1-thread-7已离开&#xff0c;当前已有1个并发
线程pool-1-thread-9即将离开
线程pool-1-thread-9已离开&#xff0c;当前已有0个并发
参考链接&#xff1a;http://www.cnblogs.com/nullzx/archive/2016/03/12/5270233.html
CountDownLatch &#xff08;闭锁&#xff09;
它保证了什么功能呢?其实和CycliBarrier也类似。
看下面这个图
这就是CycleBarrier,线程自己管理自己,大家看到人都到齐了,才继续走。
这个是CountDownLatch,由他人来协调进度。
例如跑步的时候,有个裁判,等所有的人都到齐了,他吹哨,然后大家开始跑,等所有人都跑完了,他才公布成绩。
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class CountdownLatchTest { public static void main(String[] args) { ExecutorService service &#61; Executors.newCachedThreadPool(); final CountDownLatch cdOrder &#61; new CountDownLatch(1); final CountDownLatch cdAnswer &#61; new CountDownLatch(3); for(int i&#61;0;i<3;i&#43;&#43;){ Runnable runnable &#61; new Runnable(){ public void run(){ try { System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "正准备接受命令"); cdOrder.await(); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "已接受命令"); Thread.sleep((long)(Math.random()*10000)); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "回应命令处理结果"); cdAnswer.countDown(); } catch (Exception e) { e.printStackTrace(); } } }; service.execute(runnable); } try { Thread.sleep((long)(Math.random()*10000)); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "即将发布命令"); cdOrder.countDown(); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "已发送命令&#xff0c;正在等待结果"); cdAnswer.await(); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "已收到所有响应结果"); } catch (Exception e) { e.printStackTrace(); } service.shutdown(); }
}
运行结果如下
线程pool-1-thread-3正准备接受命令
线程pool-1-thread-1正准备接受命令
线程pool-1-thread-2正准备接受命令
线程main即将发布命令
线程main已发送命令&#xff0c;正在等待结果
线程pool-1-thread-3已接受命令
线程pool-1-thread-2已接受命令
线程pool-1-thread-1已接受命令
线程pool-1-thread-3回应命令处理结果
线程pool-1-thread-1回应命令处理结果
线程pool-1-thread-2回应命令处理结果
线程main已收到所有响应结果
CountDownLatch里面有个计数器,初始值就是new countdownlatch时传入的
wait方法会一直等待,直到计数器的值变为0
coutdown方法可以让计数器的值减一
CycleBarrier&#xff08;栅栏&#xff09;
CycleBarrier 能做到让n个线程互相等待,当n个线程都做到某一步后,再继续下一步。
例如下面的例子,5个人去旅游,设置abc三个中途节点,所有人都到达a之后在继续走向b,所有人都到达b,然后才继续走向c。
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class CyclicBarrierTest { public static void main(String[] args) { ExecutorService service &#61; Executors.newCachedThreadPool(); final CyclicBarrier cb &#61; new CyclicBarrier(3); for(int i&#61;0;i<3;i&#43;&#43;){ Runnable runnable &#61; new Runnable(){ public void run(){ try { Thread.sleep((long)(Math.random()*10000)); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "即将到达集合地点1&#xff0c;当前已有" &#43; (cb.getNumberWaiting()&#43;1) &#43; "个已经到达&#xff0c;" &#43; (cb.getNumberWaiting()&#61;&#61;2?"都到齐了&#xff0c;继续走啊":"正在等候")); cb.await(); Thread.sleep((long)(Math.random()*10000)); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "即将到达集合地点2&#xff0c;当前已有" &#43; (cb.getNumberWaiting()&#43;1) &#43; "个已经到达&#xff0c;" &#43; (cb.getNumberWaiting()&#61;&#61;2?"都到齐了&#xff0c;继续走啊":"正在等候")); cb.await(); Thread.sleep((long)(Math.random()*10000)); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "即将到达集合地点3&#xff0c;当前已有" &#43; (cb.getNumberWaiting() &#43; 1) &#43; "个已经到达&#xff0c;" &#43; (cb.getNumberWaiting()&#61;&#61;2?"都到齐了&#xff0c;继续走啊":"正在等候")); cb.await(); } catch (Exception e) { e.printStackTrace(); } } }; service.execute(runnable); } service.shutdown(); }
}
运行结果如下&#xff1a;
线程pool-1-thread-2即将到达集合地点1&#xff0c;当前已有1个已经到达&#xff0c;正在等候
线程pool-1-thread-1即将到达集合地点1&#xff0c;当前已有2个已经到达&#xff0c;正在等候
线程pool-1-thread-3即将到达集合地点1&#xff0c;当前已有3个已经到达&#xff0c;都到齐了&#xff0c;继续走啊
线程pool-1-thread-1即将到达集合地点2&#xff0c;当前已有1个已经到达&#xff0c;正在等候
线程pool-1-thread-3即将到达集合地点2&#xff0c;当前已有2个已经到达&#xff0c;正在等候
线程pool-1-thread-2即将到达集合地点2&#xff0c;当前已有3个已经到达&#xff0c;都到齐了&#xff0c;继续走啊
线程pool-1-thread-1即将到达集合地点3&#xff0c;当前已有1个已经到达&#xff0c;正在等候
线程pool-1-thread-2即将到达集合地点3&#xff0c;当前已有2个已经到达&#xff0c;正在等候
线程pool-1-thread-3即将到达集合地点3&#xff0c;当前已有3个已经到达&#xff0c;都到齐了&#xff0c;继续走啊
Exchange&#xff08;栅栏&#xff09;
A线程有数据1,它需要与B线程的数据2做交换
B线程有数据2,它需要与A线程的数据1做交换
那么什么时候交换呢?得等AB都做好准备才行。
import java.util.concurrent.Exchanger;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class ExchangerTest { public static void main(String[] args) { ExecutorService service &#61; Executors.newCachedThreadPool(); final Exchanger exchanger &#61; new Exchanger(); service.execute(new Runnable(){ public void run() { try { String data1 &#61; "zxx"; System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "正在把数据" &#43; data1 &#43;"换出去"); Thread.sleep((long)(Math.random()*10000)); String data2 &#61; (String)exchanger.exchange(data1); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "换回的数据为" &#43; data2); }catch(Exception e){ } } }); service.execute(new Runnable(){ public void run() { try { String data1 &#61; "lhm"; System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "正在把数据" &#43; data1 &#43;"换出去"); Thread.sleep((long)(Math.random()*10000)); String data2 &#61; (String)exchanger.exchange(data1); System.out.println("线程" &#43; Thread.currentThread().getName() &#43; "换回的数据为" &#43; data2); }catch(Exception e){ } } }); }
}
运行结果如下&#xff1a;
线程pool-1-thread-1正在把数据zxx换出去
线程pool-1-thread-2正在把数据lhm换出去
线程pool-1-thread-2换回的数据为zxx
线程pool-1-thread-1换回的数据为lhm