热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Huffman树在数据结构中的应用与解析

本文探讨了Huffman树在数据结构中的应用及其原理。Huffman树,即哈夫曼树,是一种高效的数据压缩技术,通过构建最优二叉树实现编码,广泛应用于文件压缩和网络传输中,有效减少数据存储和传输的空间需求。

注:本文原创,转载请注明出处,本人保留对未注明出处行为的责任追究。

1.Huffman树是什么

Huffman树也称为哈夫曼编码,是一种编码方式,常用于协议的制定,以节省传输空间。

 

A - F字母,出现的频率分别为:

A:5,B: 24, C:7,D:17,E:34,F:5,G:13

对比:

1)使用常规协议

如果我们将这些字母无论大小进行编码,一共是7个字母,因此协议规定用三位二进制数表示,传输完这105个字符,共需要105*3 = 315位。

2)使用Huffman树

如果我们按照Huffman树的规则(如上图),共需要 5*4 + 24 * 2 + 7*4 + 17*2 + 34*1+5*5+13*3 = 228位,共节省87位,大约节省27%的带宽占用。

2.Huffman树的原理

Huffman树是依据字符的出现频次,对字符进行二进制的编码,出现频次高的节点编码字符少,出现频次低的字节编码字符多。

感谢: https://www.cnblogs.com/journal-of-xjx/p/6670464.html 博主:Jiaxin Tse

如图是huffman树的构建过程,字符的权重为出现频次。

构建过程:

  STEP1:将权重最小的两个字符节点构建一个父节点,权重为两者权重之和

  STEP1 进行 size - 1次 ,即可完成huffman树的构建。

编码过程: 给定字符串,以及"单词-频次Map" ,构建huffman树,将给定字符串转成二进制字符串

  以字符d为例子,从根节点开始,右枝为1,左枝为0,因此d的编码就是111

  给定 abdc  => 0101111100

  因为每一个被编码的字符节点是叶子节点,因此每一串二进制编码都有唯一对应的译码

解码过程: 给定二进制编码,以及"单词-频次Map",构建huffman树,将给定的二进制字符串转成字符串

  0101111100 => abdc

  

3.Huffman树的三大操作

Huffman树常见的三大操作有 构建、编码、解码。上面给出了一些基本原理和使用,接下来是代码设计的思路。

Node 以及Tree :

/**
 * 哈夫曼树
 */
public class HuffmanTree {
    static class Node{
        Character ch; // 保存被编码的字符
        long frequency ; // 被编码的字符出现频次
        Node left; // 左子节点
        Node right; // 右子节点
        Node parent; // 父节点
    }

static class Tree{
    Node root;
    List leafNodes;
}

 

1)构建huffman树

STEP1: 将每个字符抽象成一个节点,使用PriprotiesQueue这种排序的结构,按照Node的权值,也就是单词的出现频次为优先级排序

STEP2: 取出其中权值最小的两个节点,进行构建父节点,父节点权值为子节点权值之和

        假设初始的节点数(初始的队列大小)为size,那么需要size - 1次STEP2才能完成整颗huffman树的构建。

     记得存储叶子节点的列表,以便编码的时候能从叶子节点向根节点进行拼接字符串。

 

/**
* 构建huffman树
* @return
*/
public static Tree buildHuffmanTree(
Map charAndCounts){

Tree huffmanTree = new Tree();
huffmanTree.leafNodes = new ArrayList();
// 依据Node有序的队列
PriorityQueue priorityQueue = new PriorityQueue();

// 对每个字符进行遍历
for(Character ch : charAndCounts.keySet()){
long frequency = charAndCounts.get(ch);
Node node = new Node(ch,frequency);
// 存入叶子节点列表,以便于遍历
huffmanTree.leafNodes.add(node);
// 入堆
priorityQueue.add(node);
}

// 进行建树操作,进行size-1次操作,每次取出两个最小的权值的节点,构建父节点并合并权值。
for(int i = 0 ; i Node node1 = priorityQueue.poll(); // 第一小 ,默认放右边
Node node2 = priorityQueue.poll(); // 第二小,默认放左边
Node top = new Node();
top.right = node1;
top.left = node2;
top.frequency = node1.frequency + node2.frequency;

node1.parent = top;
node2.parent = top;

priorityQueue.add(top);
}

// 经过size-1次合并操作后,队列中只剩下一个节点
huffmanTree.root = priorityQueue.poll();
return huffmanTree;
}

 

 

2)编码 : 给定字符串,以及"单词-频次Map" ,构建huffman树,将给定字符串转成二进制字符串

首先使用 "单词-频次"Map 构建huffman树。

依次遍历每个huffman树的叶子节点,每个节点由叶子节点向根节点遍历,并进行 0 、1的拼接。

这样就生成了 Map<字符,二进制编码>表。

然后依次遍历给定字符串的每个字符,分别转成二进制编码拼接即可。

 

   /**
     * 进行编码
     * @param str
     * @param charAndCounts
     * @return
     */
    public static String encode(
            String str,
            Map charAndCounts){ Map chAndEncoding = new HashMap(); // 1. 构建huffman树 Tree tree = buildHuffmanTree(charAndCounts); // 2.依次遍历每个huffman树的叶子节点,每个节点由叶子节点向根节点遍历,并进行 0 、1的拼接。 List leafNodes = tree.leafNodes; for(Node leafNode : leafNodes){ Node current = leafNode; String binaryCode = ""; while(current != tree.root && current != null){ if(current.parent != null && current == current.parent.left){ binaryCode = "0" + binaryCode; }else if(current.parent != null && current == current.parent.right){ binaryCode = "1" + binaryCode; } current = current.parent; } chAndEncoding.put(leafNode.ch,binaryCode); } System.out.println(chAndEncoding); // 3.遍历每个字符进行编码 StringBuffer strEncoded = new StringBuffer(); for(char ch : str.toCharArray()){ strEncoded.append(chAndEncoding.get(ch)); } return strEncoded.toString(); }

 

测试:

    public static void main(String[] args) {
        Map map = new HashMap(); map.put('a',5l); map.put('b',24l); map.put('c',7l); map.put('d',17l); map.put('e',34l); map.put('f',5l); map.put('g',13l); System.out.println(encode("abcd",map)); }

结果:

{a=01001, b=10, c=0101, d=11, e=00, f=01000, g=011}
0100110010111

3)解码:给定二进制字符串,以及"单词-频次Map“,构建huffman树,将给定二进制字符串转成原未经编码的字符串。

首先使用"单词-频次"Map 构建huffman树。

然后按照给定的二进制字符串,挨个进行从根的查找,找到叶子节点后就转成原字符,从下一个字符串索引开始继续解码。

 

    /**
     * 解码过程
     * @param binStr
     * @param charsAndCounts
     * @return
     */
    public static String decode(
            String binStr,
            Map charsAndCounts){
        // 1.获得Huffman树
        Tree tree = buildHuffmanTree(charsAndCounts);

        // 2.按照给定的二进制字符串,挨个进行从根的查找,找到叶子节点后就转成原字符,从下一个字符串索引开始继续解码。
        StringBuffer originalStr = new StringBuffer();
        int i = 0;

        while(i < binStr.length()){
            char ch = '\0';
            Node current = tree.root;
            while(current.ch ==null && i < binStr.length()){
                ch = binStr.charAt(i);
                if(ch == '1'){
                    current = current.right;
                }else if(ch == '0'){
                    current = current.left;
                }
                i++;
            }
            originalStr.append(current.ch);
        }
        return originalStr.toString();
    }

测试:

    public static void main(String[] args) {
        Map map = new HashMap();
        map.put('a',5l);
        map.put('b',24l);
        map.put('c',7l);
        map.put('d',17l);
        map.put('e',34l);
        map.put('f',5l);
        map.put('g',13l);
        System.out.println(encode("abcd",map));
        System.out.println(decode("0100110010111",map));
    }

结果:

{a=01001, b=10, c=0101, d=11, e=00, f=01000, g=011}
0100110010111
abcd
abcd

 


推荐阅读
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 本文探讨了如何通过Service Locator模式来简化和优化在B/S架构中的服务命名访问,特别是对于需要频繁访问的服务,如JNDI和XMLNS。该模式通过缓存机制减少了重复查找的成本,并提供了对多种服务的统一访问接口。 ... [详细]
  • linux网络子系统分析(二)—— 协议栈分层框架的建立
    目录一、综述二、INET的初始化2.1INET接口注册2.2抽象实体的建立2.3代码细节分析2.3.1socket参数三、其他协议3.1PF_PACKET3.2P ... [详细]
  • 本教程介绍如何在C#中通过递归方法将具有父子关系的列表转换为树形结构。我们将详细探讨如何处理字符串类型的键值,并提供一个实用的示例。 ... [详细]
  • 编译原理中的语法分析方法探讨
    本文探讨了在编译原理课程中遇到的复杂文法问题,特别是当使用SLR(1)文法时遇到的多重规约与移进冲突。文章讨论了可能的解决策略,包括递归下降解析、运算符优先级解析等,并提供了相关示例。 ... [详细]
  • RTThread线程间通信
    线程中通信在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取& ... [详细]
  • 在Java开发中,如何利用ProcessBuilder类调用外部程序是一个常见的需求。本文将详细介绍ProcessBuilder类的使用方法,并提供示例代码帮助你更好地理解和应用。 ... [详细]
  • Java 中的十进制样式 getZeroDigit()方法,示例 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 本文详细介绍了`android.os.Binder.getCallingPid()`方法的功能和应用场景,并提供了多个实际的代码示例。通过这些示例,开发者可以更好地理解如何在不同的开发场景中使用该方法。 ... [详细]
  • PHP面试题精选及答案解析
    本文精选了新浪PHP笔试题及最新的PHP面试题,并提供了详细的答案解析,帮助求职者更好地准备PHP相关的面试。 ... [详细]
  • 本文探讨了在UIScrollView上嵌入Webview时遇到的一个常见问题:点击图片放大并返回后,Webview无法立即滑动。我们将分析问题原因,并提供有效的解决方案。 ... [详细]
  • 题目编号:2049 [SDOI2008]Cave Exploration。题目描述了一种动态图操作场景,涉及三种基本操作:断开两个节点间的连接(destroy(a,b))、建立两个节点间的连接(connect(a,b))以及查询两节点是否连通(query(a,b))。所有操作均确保图中无环存在。 ... [详细]
  • 题目描述:计算从起点到终点的最小能量消耗。如果下一个单元格的风向与当前单元格相同,则消耗为0,否则为1。共有8个可能的方向。 ... [详细]
  • 本文介绍了如何在Linux系统中获取库源码,并在从源代码编译软件时收集所需的依赖项列表。 ... [详细]
author-avatar
黄秋蝉_961
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有