热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[机器学习入门]李宏毅机器学习笔记-23(SupportVectorMachine;支持向量机)

[机器学习入门]李宏毅机器学习笔记-23(SupportVectorMachine;支持向量机)PDFVIDEOSupportVectorMachineOut

[机器学习入门] 李宏毅机器学习笔记-23(Support Vector Machine;支持向量机)

PDF VIDEO

Support Vector Machine

Outline

这里写图片描述

Hinge Loss

Binary Classification

分为三步。
δ不可微分,所以变化一下。

这里写图片描述


step 2 :Loss function

红色这条线就是Square Loss的表现,与黑色的理想loss曲线比较,当x很大是,将会取得很大的值,这是不合理的,既然如此,我们再试一下Square Loss+cross entropy。

这里写图片描述

蓝色这条线就是Sigmoid+Square loss,但是实际上,Square的performance并不好,用cross entropy更合理,就是绿色那条线,当横坐标趋近无穷大时,趋近于0,如果负无穷,则会无穷大。比较一下蓝绿两条线,如果我们横坐标,从-2移到-1,绿色这条线变化很大,蓝色反之,造成的效果就是,横坐标非常negative时,绿色调整参数可以取得较好的回报,所以它很乐意把negative的值变大,而蓝色反之,很懒惰。

这里写图片描述

而Hinge Loss为紫色线表示。

这里写图片描述

如果比较紫绿两条线,它们最大的不同就是对待做得好的example的态度,如果把横坐标从1挪到2,对绿色来说它会有动机把横坐标变得更大,而紫色对此的态度是及格就好,不会再努力变大。

Linear SVM

Compared with logistic regression, linear SVMhas different loss function

这里写图片描述

Linear SVM – gradient descent

SVM通常不用gradient descent做,但也是可以做的。

这里写图片描述

Linear SVM – another formulation

这里写图片描述

Kernel Method

Dual Representation

这里写图片描述

这里写图片描述

我们只需要能算出K(x,z)就可以了,这就是Kernel Trick。

Kernel Trick

这里写图片描述

这里写图片描述

这里写图片描述

Radial Basis Function Kernel

衡量x与z的相似度,在无穷多维上去做事情

这里写图片描述

Sigmoid Kernel

这里写图片描述

这里写图片描述


* Support Vector Regression (SVR)
[Bishop chapter 7.1.4]
* Ranking SVM
[Alpaydin, Chapter 13.11]
* One-class SVM
[Alpaydin, Chapter 13.11]

SVM vs Deep Learning

这里写图片描述


推荐阅读
  • MATLAB字典学习工具箱SPAMS:稀疏与字典学习的详细介绍、配置及应用实例
    SPAMS(Sparse Modeling Software)是一个强大的开源优化工具箱,专为解决多种稀疏估计问题而设计。该工具箱基于MATLAB,提供了丰富的算法和函数,适用于字典学习、信号处理和机器学习等领域。本文将详细介绍SPAMS的配置方法、核心功能及其在实际应用中的典型案例,帮助用户更好地理解和使用这一工具箱。 ... [详细]
  • 本文探讨了基于点集估算图像区域的Alpha形状算法在Python中的应用。通过改进传统的Delaunay三角剖分方法,该算法能够生成更加灵活和精确的形状轮廓,避免了单纯使用Delaunay三角剖分时可能出现的过大三角形问题。这种“模糊Delaunay三角剖分”技术不仅提高了形状的准确性,还增强了对复杂图像区域的适应能力。 ... [详细]
  • 在对WordPress Duplicator插件0.4.4版本的安全评估中,发现其存在跨站脚本(XSS)攻击漏洞。此漏洞可能被利用进行恶意操作,建议用户及时更新至最新版本以确保系统安全。测试方法仅限于安全研究和教学目的,使用时需自行承担风险。漏洞编号:HTB23162。 ... [详细]
  • 在编译 PHP7 的 PDO MySQL 扩展时,可能会遇到 `[mysql_driver.lo]` 错误 1。该问题通常出现在 `pdo_mysql_fetch_error_func` 函数中。本文详细介绍了导致这一错误的常见原因,包括依赖库版本不匹配、编译选项设置不当等,并提供了具体的解决步骤和调试方法,帮助开发者快速定位并解决问题。 ... [详细]
  • 本文介绍了如何利用Shell脚本高效地部署MHA(MySQL High Availability)高可用集群。通过详细的脚本编写和配置示例,展示了自动化部署过程中的关键步骤和注意事项。该方法不仅简化了集群的部署流程,还提高了系统的稳定性和可用性。 ... [详细]
  • Python 伦理黑客技术:深入探讨后门攻击(第三部分)
    在《Python 伦理黑客技术:深入探讨后门攻击(第三部分)》中,作者详细分析了后门攻击中的Socket问题。由于TCP协议基于流,难以确定消息批次的结束点,这给后门攻击的实现带来了挑战。为了解决这一问题,文章提出了一系列有效的技术方案,包括使用特定的分隔符和长度前缀,以确保数据包的准确传输和解析。这些方法不仅提高了攻击的隐蔽性和可靠性,还为安全研究人员提供了宝贵的参考。 ... [详细]
  • 当使用 `new` 表达式(即通过 `new` 动态创建对象)时,会发生两件事:首先,内存被分配用于存储新对象;其次,该对象的构造函数被调用以初始化对象。为了确保资源管理的一致性和避免内存泄漏,建议在使用 `new` 和 `delete` 时保持形式一致。例如,如果使用 `new[]` 分配数组,则应使用 `delete[]` 来释放内存;同样,如果使用 `new` 分配单个对象,则应使用 `delete` 来释放内存。这种一致性有助于防止常见的编程错误,提高代码的健壮性和可维护性。 ... [详细]
  • 数字图书馆近期展出了一批精选的Linux经典著作,这些书籍虽然部分较为陈旧,但依然具有重要的参考价值。如需转载相关内容,请务必注明来源:小文论坛(http://www.xiaowenbbs.com)。 ... [详细]
  • 本文探讨了利用JavaScript实现集合的对称差集算法的方法。该算法旨在处理多个数组作为输入参数,同时保留每个数组中元素的原始顺序。算法不会移除单个数组内的重复元素,但会删除在不同数组之间出现的重复项。通过这种方式,能够有效地计算出多个数组的对称差集。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 《Intel IA-32 架构软件开发人员手册详尽指南》提供了详尽的 IA-32 架构技术文档,涵盖指令集、系统编程和硬件接口等内容,为软件开发人员提供全面的技术支持和参考。该手册不仅包括详细的架构说明,还提供了丰富的编程示例和最佳实践,帮助开发人员更好地理解和应用 IA-32 架构。 ... [详细]
  • 投融资周报 | Circle 达成 4 亿美元融资协议,唯一艺术平台 A 轮融资超千万美元 ... [详细]
  • 分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • cs231n Lecture 3 线性分类笔记(一)
    内容列表线性分类器简介线性评分函数阐明线性分类器损失函数多类SVMSoftmax分类器SVM和Softmax的比较基于Web的可交互线性分类器原型小结注:中文翻译 ... [详细]
author-avatar
rorather_0979107
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有