热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

[Pytorch系列25]:神经网络基础单个无激活函数的神经元实现简单线性回归2

作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https:blog.

 作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客

本文网址:https://blog.csdn.net/HiWangWenBing/article/details/120600611


目录

前言 深度学习模型框架

第1章 业务领域分析

1.1  步骤1-1:业务领域分析

1.2 步骤1-2:业务建模

1.3 代码实例前置条件

第2章 前向运算模型定义

2.1 步骤2-1:数据集选择

2.2 步骤2-2:数据预处理

2.3 步骤2-3:神经网络建模

2.4 步骤2-4:神经网络输出

第3章 后向运算模型定义

3.1 步骤3-1:定义loss函数

3.2  步骤3-2:定义优化器

3.3 步骤3-3:模型训练

3.4 步骤3-4:模型验证

3.5 步骤3-5:模型可视化

第4章 模型部署

4.1 步骤4-1:模型部署





前言 深度学习模型框架

[人工智能-深度学习-8]:神经网络基础 - 机器学习、深度学习模型、模型训练_文火冰糖(王文兵)的博客-CSDN博客_神经网络与深度学习第1章 白话机器学习[人工智能-综述-4]:白话深度学习-- 无基础小白都能理解机器学习的核心概念_文火冰糖(王文兵)的博客-CSDN博客[人工智能-深度学习-7]:神经网络基础 - 人工神经网络ANN_文火冰糖(王文兵)的博客-CSDN博客第2章 机器学习的模型与步骤2.1深度学习与机器学习上述三个概念中:人工智能的概念最广泛,所以有能机器具有类”人“一样智能的技术、非技术(如伦理)的领域,都是人工智能。机器获取“智能”的一个重要手段是,机器具备“自我学习”的能力,...


1.2 步骤1-2:业务建模


1.3 代码实例前置条件

#环境准备
import numpy as np # numpy数组库
import math # 数学运算库
import matplotlib.pyplot as plt # 画图库import torch # torch基础库
import torch.nn as nn # torch神经网络库print("Hello World")
print(torch.__version__)
print(torch.cuda.is_available())

Hello World
1.8.0
False

第2章 前向运算模型定义


2.1 步骤2-1:数据集选择

这里不需要采用已有的开源数据集,只需要自己构建数据集即可。

#2-1 准备数据集
x_sample = np.linspace(0, 5, 64)noise = np.random.randn(64)
y_sample = 2 * x_sample + 1 + noisey_line = 2 * x_sample + 1#可视化数据
plt.scatter(x_sample, y_sample)
plt.plot(x_sample, y_line,'red')

2.2 步骤2-2:数据预处理

(1)把numpy一维数据转换成二维样本数据

(2)把numpy样本数据转换成torch样本数据

# 2-2 对数据预处理
print("Numpy原始样本的形状")
print(x_sample.shape)
print(y_sample.shape)# 把一维线性数据转换成二维样本数据,每个样本数据为一维
print("\nNumpy训练样本的形状")
x_numpy = x_sample.reshape(-1, 1).astype('float32')
y_numpy = y_sample.reshape(-1, 1).astype('float32')
print(x_numpy.shape)
print(y_numpy.shape)# numpy样本数据转换成pytorch样本数据
print("\ntorch训练样本的形状")
x_train = torch.from_numpy(x_numpy)
y_train = torch.from_numpy(y_numpy)print(x_train.shape)
print(y_train.shape)plt.scatter(x_train, y_train)

Numpy原始样本的形状
(64,)
(64,)Numpy训练样本的形状
(64, 1)
(64, 1)torch训练样本的形状
torch.Size([64, 1])
torch.Size([64, 1])

Out[3]:


2.3 步骤2-3:神经网络建模

这里的神经网络模型是单输入(size=1)、单输出(size=1)、无激活函数的线性神经元。

# 2-3 定义网络模型
print("定义并初始化模型")
w = Variable(torch.randn(1), requires_grad=True)
b = Variable(torch.randn(1), requires_grad=True)
print(w, w.data)
print(b, b.data)def linear_mode(x):return (w * x + b)model = linear_mode

定义并初始化模型
tensor([0.1358], requires_grad=True) tensor([0.1358])
tensor([0.4257], requires_grad=True) tensor([0.4257])

2.4 步骤2-4:神经网络输出

# 2-4 定义网络预测输出
y_pred = linear_mode(x_train)
print(y_pred.shape)

torch.Size([64, 1])

备注:输出是64个样本的一维数据


第3章 后向运算模型定义


3.1 步骤3-1:定义loss函数

这里采用的MSE loss函数

# 3-1 定义loss函数:
# loss_fn= MSE loss
def MSELoss(y_, y):return (torch.mean((y_ - y)**2))loss_fn = MSELossprint(loss_fn)


3.2  步骤3-2:定义优化器

# 3-2 定义优化器
Learning_rate = 0.01 #学习率# lr:指明学习率
def optimizer_SGD_step(lr):w.data = w.data - lr * w.grad.datab.data = b.data - lr * b.grad.dataoptimizer = optimizer_SGD_stepprint(optimizer)



3.3 步骤3-3:模型训练

# 3-3 模型训练
w = Variable(torch.randn(1), requires_grad=True)
b = Variable(torch.randn(1), requires_grad=True)# 定义迭代次数
epochs = 500loss_history = [] #训练过程中的loss数据
w_history = [] #训练过程中的w参数值
b_history = [] #训练过程中的b参数值for i in range(0, epochs):#(1) 前向计算y_pred = model(x_train)#(2) 计算lossloss = loss_fn(y_pred, y_train)#(3) 反向求导loss.backward(retain_graph=True)#(4) 反向迭代optimizer_SGD_step(Learning_rate)#(5) 复位优化器的梯度#optimizer.zero_grad()w.grad.zero_()b.grad.zero_()#记录迭代数据loss_history.append(loss.data) w_history.append(w.data)b_history.append(b.data)if(i % 100 == 0):print('epoch {} loss {:.4f}'.format(i, loss.item())) print("\n迭代完成")
print("\n训练后w参数值:", w)
print("\n训练后b参数值:", b)
print("\n最小损失数值 :", loss)
print(len(loss_history))
print(len(w_history))
print(len(b_history))

epoch 0 loss 42.0689
epoch 100 loss 1.0441
epoch 200 loss 1.0440
epoch 300 loss 1.0439
epoch 400 loss 1.0439迭代完成训练后w参数值: Parameter containing:
tensor([[1.8530]], requires_grad=True) 1.8529784679412842训练后b参数值: Parameter containing:
tensor([1.2702], requires_grad=True) 1.2701895236968994最小损失数值 : tensor(1.0439, grad_fn=) 1.0438624620437622
500
500
500

3.4 步骤3-4:模型验证

NA


3.5 步骤3-5:模型可视化

# 3-4 可视化模型数据
#model返回的是总tensor,包含grad_fn,用data提取出的tensor是纯tensor
y_pred = model(x_train).data.numpy().squeeze()
print(x_train.shape)
print(y_pred.shape)
print(y_line.shape)plt.scatter(x_train, y_train, label='SampleLabel')
plt.plot(x_train, y_pred, label='Predicted')
plt.plot(x_train, y_line, label='Line')plt.legend()
plt.show()

torch.Size([64, 1])
(64,)
(64,)

#显示loss的历史数据
plt.plot(loss_history, "r+")
plt.title("loss value")

#显示w参数的历史数据
plt.plot(w_history, "r+")
plt.title("w value")

#显示b参数的历史数据
plt.plot(b_history, "r+")
plt.title("b value")


第4章 模型部署


4.1 步骤4-1:模型部署

NA


作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客

本文网址:https://blog.csdn.net/HiWangWenBing/article/details/120600611


推荐阅读
  • 本文介绍了机器学习手册中关于日期和时区操作的重要性以及其在实际应用中的作用。文章以一个故事为背景,描述了学童们面对老先生的教导时的反应,以及上官如在这个过程中的表现。同时,文章也提到了顾慎为对上官如的恨意以及他们之间的矛盾源于早年的结局。最后,文章强调了日期和时区操作在机器学习中的重要性,并指出了其在实际应用中的作用和意义。 ... [详细]
  • 本文介绍了在Python张量流中使用make_merged_spec()方法合并设备规格对象的方法和语法,以及参数和返回值的说明,并提供了一个示例代码。 ... [详细]
  • 十大经典排序算法动图演示+Python实现
    本文介绍了十大经典排序算法的原理、演示和Python实现。排序算法分为内部排序和外部排序,常见的内部排序算法有插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。文章还解释了时间复杂度和稳定性的概念,并提供了相关的名词解释。 ... [详细]
  • 超级简单加解密工具的方案和功能
    本文介绍了一个超级简单的加解密工具的方案和功能。该工具可以读取文件头,并根据特定长度进行加密,加密后将加密部分写入源文件。同时,该工具也支持解密操作。加密和解密过程是可逆的。本文还提到了一些相关的功能和使用方法,并给出了Python代码示例。 ... [详细]
  • 本文介绍了贝叶斯垃圾邮件分类的机器学习代码,代码来源于https://www.cnblogs.com/huangyc/p/10327209.html,并对代码进行了简介。朴素贝叶斯分类器训练函数包括求p(Ci)和基于词汇表的p(w|Ci)。 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • Java太阳系小游戏分析和源码详解
    本文介绍了一个基于Java的太阳系小游戏的分析和源码详解。通过对面向对象的知识的学习和实践,作者实现了太阳系各行星绕太阳转的效果。文章详细介绍了游戏的设计思路和源码结构,包括工具类、常量、图片加载、面板等。通过这个小游戏的制作,读者可以巩固和应用所学的知识,如类的继承、方法的重载与重写、多态和封装等。 ... [详细]
  • 向QTextEdit拖放文件的方法及实现步骤
    本文介绍了在使用QTextEdit时如何实现拖放文件的功能,包括相关的方法和实现步骤。通过重写dragEnterEvent和dropEvent函数,并结合QMimeData和QUrl等类,可以轻松实现向QTextEdit拖放文件的功能。详细的代码实现和说明可以参考本文提供的示例代码。 ... [详细]
  • baresip android编译、运行教程1语音通话
    本文介绍了如何在安卓平台上编译和运行baresip android,包括下载相关的sdk和ndk,修改ndk路径和输出目录,以及创建一个c++的安卓工程并将目录考到cpp下。详细步骤可参考给出的链接和文档。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • iOS超签签名服务器搭建及其优劣势
    本文介绍了搭建iOS超签签名服务器的原因和优势,包括不掉签、用户可以直接安装不需要信任、体验好等。同时也提到了超签的劣势,即一个证书只能安装100个,成本较高。文章还详细介绍了超签的实现原理,包括用户请求服务器安装mobileconfig文件、服务器调用苹果接口添加udid等步骤。最后,还提到了生成mobileconfig文件和导出AppleWorldwideDeveloperRelationsCertificationAuthority证书的方法。 ... [详细]
  • 纠正网上的错误:自定义一个类叫java.lang.System/String的方法
    本文纠正了网上关于自定义一个类叫java.lang.System/String的错误答案,并详细解释了为什么这种方法是错误的。作者指出,虽然双亲委托机制确实可以阻止自定义的System类被加载,但通过自定义一个特殊的类加载器,可以绕过双亲委托机制,达到自定义System类的目的。作者呼吁读者对网上的内容持怀疑态度,并带着问题来阅读文章。 ... [详细]
  • 本文讨论了如何使用GStreamer来删除H264格式视频文件中的中间部分,而不需要进行重编码。作者提出了使用gst_element_seek(...)函数来实现这个目标的思路,并提到遇到了一个解决不了的BUG。文章还列举了8个解决方案,希望能够得到更好的思路。 ... [详细]
  • 本文介绍了Foundation框架中一些常用的结构体和类,包括表示范围作用的NSRange结构体的创建方式,处理几何图形的数据类型NSPoint和NSSize,以及由点和大小复合而成的矩形数据类型NSRect。同时还介绍了创建这些数据类型的方法,以及字符串类NSString的使用方法。 ... [详细]
author-avatar
禅茶一味2502922807_527
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有