热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Lucene中的Tokenizer,TokenFilter学习

lucene中的TokenStream,TokenFilter之间关系TokenStream是一个能够在被调用后产
 
lucene中的TokenStream,TokenFilter之间关系
 
TokenStream是一个能够在被调用后产生语汇单元序列的类,其中有两个类型:Tokenizer和TokenFilter,两者的不同在于TokenFilter中包含了一个TokenStream作为input,该input仍然可以为一种TokenFilter进行递归封装,是一种组合模式;而Tokenzier接受一个Reader对象读取字符并创建语汇单元,TokenFilter负责处理输入的语汇单元,通过新增、删除或者修改属性的方式来产生新的语汇单元。
 


 
 
 
对照我们之前分析的同义词TokenizerFactory相关配置,其数据流的过程如下:
 
java.io.Reader -> com.chenlb.mmseg4j.solr.MMSegTokenizer -> SynonymFilter -> StopFilter -> WordDelimiterFilter -> LowerCaseFilter -> RemoveDuplicatesTokenFilter
 
 
对于某些TokenFilter来说,在分析过程中对事件的处理顺序非常重要。当指定过滤操作顺序时,还应该考虑这样的安排对于应用程序性能可能造成的影响。
 
在solr中,schema.xml(最新版本已经修改为managed-schema)的作用是告诉solr该如何对输入的文档进行索引。
 
http://www.liaozhida.net/solr/solr%E7%B3%BB%E5%88%97%E4%B8%83%E8%AF%A6%E8%A7%A3schema-xml%E7%89%B9%E6%80%A7.html
 
对于每个不同的field,需要设置其对应的数据类型,数据类型决定了solr如何去解释每个字段,以及怎样才能搜索到这个字段。在字段分析器中(field analyzers),指导solr怎样对输入的数据进行处理然后再构建出索引,类似于文本处理器或者文本消化器。
 
当一个document被索引或者检索操作的时候,分析器Analyzer会审阅字段field的文本内容,然后生成一个token流,analyzer可以由多个tokenizer和filter组成;tokenizer可以将field字段的内容切割成单个词或token,进行分词处理;filters可以接收tokenizer分词输出的token流,进行转化过滤处理,例如对词元进行转换(简繁体转换),舍弃无用词元(虚词谓词)。tokenizer和filter一起组成一个管道或者链条,对输入的文档和输入的查询文本进行处理,一系列的tokenizer和filter被称为分词器analyzer,得到的结果被存储成为索引字典用来匹配查询输入条件。
 
此外,我们还可以将索引分析器和查询分析器分开,例如下面的字段配置的意思:对于索引,先经过一个基本的分析器,然后转换为小写字母,接着过滤掉不在keepword.txt中的词,最后将剩下的词元转换为同义词;对于查询,先经过一个基本的分词器,然后转换为小写字母就可以了。
 

  
    
    
    
    
  
  
    
    
  
 
 
在Lucene实战一书中,详解了如何从头编写一个同义词Analyzer,通过改写termAttribute以及positionIncrementAttribute的方式来达到实现同义词的方式,不过由于书上的示例比较陈旧,而charTermAttribute不能达到修改同义词元的目的(只能进行append),因此替换最终的目的没有达到。
 
 
public class SynonymFilter extends TokenFilter {

    private static final String TOKEN_TYPE_SYNOnYM= "SYNONYM";

    private Stack synonymStack;
    private SynonymEngine synonymEngine;
    private AttributeSource.State current;
    private final CharTermAttribute bytesTermAttribute;
    private final PositionIncrementAttribute positionIncrementAttribute;

    /**
     * Construct a token stream filtering the given input.
     *
     * @param input
     */
    protected SynonymFilter(TokenStream input, SynonymEngine synonymEngine) {
        super(input);
        this.synOnymEngine= synonymEngine;
        synOnymStack= new Stack<>();

        this.bytesTermAttribute = addAttribute(CharTermAttribute.class);
        this.positiOnIncrementAttribute= addAttribute(PositionIncrementAttribute.class);
    }

    @Override
    public boolean incrementToken() throws IOException {
        if (!synonymStack.isEmpty()) {
            String syn = synonymStack.pop();
            restoreState(current);

//            bytesTermAttribute.setBytesRef(new BytesRef(syn.getBytes()));
//            bytesTermAttribute.resizeBuffer(0);
            bytesTermAttribute.append(syn);

            positionIncrementAttribute.setPositionIncrement(0);
            return true;
        }

        if (!input.incrementToken()) {
            return false;
        }

        if (addAliasesToStack()) {
            current = captureState();
        }

        return true;
    }

    private boolean addAliasesToStack() throws IOException {
        String[] synOnyms= synonymEngine.getSynonyms(bytesTermAttribute.toString());
        if (synOnyms== null) {
            return false;
        }
        for (String synonym : synonyms) {
            synonymStack.push(synonym);
        }
        return true;
    }
}
 
 
Analyzer,用于将tokenizer和filter串联起来:
 
public class SynonymAnalyzer extends Analyzer {
    @Override
    protected TokenStreamComponents createComponents(String fieldName) {
        StandardTokenizer source = new StandardTokenizer();
        return new TokenStreamComponents(source, new SynonymFilter(new StopFilter(new LowerCaseFilter(source),
                new CharArraySet(StopAnalyzer.ENGLISH_STOP_WORDS_SET, true)), new TestSynonymEngine()));
    }
}
 
 
我们定义一个简易的同义词匹配引擎:
 
public interface SynonymEngine {
    String[] getSynonyms(String s) throws IOException;
}

public class TestSynonymEngine implements SynonymEngine {

    public static final Map map = new HashMap<>();

    static {
        map.put("quick", new String[]{"fast", "speedy"});
    }

    @Override
    public String[] getSynonyms(String s) throws IOException {
        return map.get(s);
    }
}
 
对最终结果进行测试:
 
   
public static void main(String[] args) throws IOException {
        SynonymAnalyzer analyzer = new SynonymAnalyzer();
        TokenStream tokenStream = analyzer.tokenStream("contents", new StringReader("The quick brown fox"));
        tokenStream.reset();

        CharTermAttribute charTermAttribute = tokenStream.addAttribute(CharTermAttribute.class);
        OffsetAttribute offsetAttribute = tokenStream.addAttribute(OffsetAttribute.class);
        PositionIncrementAttribute positiOnIncrementAttribute=
                tokenStream.addAttribute(PositionIncrementAttribute.class);
        TypeAttribute typeAttribute = tokenStream.addAttribute(TypeAttribute.class);

        int position = 0;
        while (tokenStream.incrementToken()) {
            int positiOnIncrement= positionIncrementAttribute.getPositionIncrement();
            if (positionIncrement > 0) {
                position += positionIncrement;
                System.out.println();
                System.out.print(position + " : ");
            }

            System.out.printf("[%s : %d ->  %d : %s]", charTermAttribute.toString(), offsetAttribute.startOffset(), offsetAttribute.endOffset(),
                    typeAttribute.type());
        }
 
 
测试出的结果,可以看出位置1的谓词the已经被剔除,位置2处加入了较多的同义词,由于使用的append,所以同义词记在了一起。
 
2 : [quick : 4 ->  9 : ][quickspeedy : 4 ->  9 : ][quickfast : 4 ->  9 : ]
3 : [brown : 10 ->  15 : ]
4 : [fox : 16 ->  19 : ]
 
 
 
 
Solr同义词设置
 
Solr中的同义词使用的是 SynonymFilterFactory 来进行加载的,我们需要在定义schema时,对某个字段设置同义词时,可以使用:
 

        
            
            
            
            
            
            
        
        
            
            
            
            
            
            
            
        
    
 
 
需要配置对应的 synonyms 属性,指定 定义同义词的配置文件,设置是否忽略大小写等属性。
 
而在加载同义词时,对文件进行逐行读取(使用LineNumberReader),对于每一行的数据,先使用 => 作为分隔符,同义词在左右两边(左边作为input,右边作为output)都可以配置成多个,以逗号分隔,最后以笛卡尔积的形式将其放至map中。
 
String line = null;
    while ((line = in.readLine()) != null) {
      if (line.length() == 0 || line.charAt(0) == '#') {
        continue; // ignore empty lines and comments
      }

      // TODO: we could process this more efficiently.
      String sides[] = split(line, "=>");
      if (sides.length > 1) { // explicit mapping
        if (sides.length != 2) {
          throw new IllegalArgumentException("more than one explicit mapping specified on the same line");
        }
        String inputStrings[] = split(sides[0], ",");
        CharsRef[] inputs = new CharsRef[inputStrings.length];
        for (int i = 0; i    
  
 
所有的同义词加载完成后,会生成一个SynonymMap,该map就被用来在全文检索的过程中进行同义词替换。
 
在我们对某个单词进行查询时,可以查询到我们设置的字段query分析器结构,生成一个TokenizerChain对象,对应的Tokenizer为我们设置的分词器,filters为我们设置的过滤器链条,会根据过滤器链条Chain进行
 



 
 
 
通过input的方式设置同义词Filter,组成该链条结果。
 
@Override
  protected TokenStreamComponents createComponents(String fieldName) {
    Tokenizer tk = tokenizer.create();
    TokenStream ts = tk;
    for (TokenFilterFactory filter : filters) {
      ts = filter.create(ts);
    }
    return new TokenStreamComponents(tk, ts);
  }
 
 
而具体到每个FilterFactory,例如SynonymFilterFactory,都通过create方法来创建对应的Filter用于同义词过滤。
 
@Override
  public TokenStream create(TokenStream input) {
    // if the fst is null, it means there's actually no synonyms... just return the original stream
    // as there is nothing to do here.
    return map.fst == null ? input : new SynonymFilter(input, map, ignoreCase);
  }
 
 
创建一个SynonymFilter来进行最后真正的筛选,将同义词进行替换,整体的类结构图如下:
 


 
lucene内置的Token
 
lucene中除了内置的几个Tokenizer,在solr中的field analyzer以及index中也得到了应用,下面就对这几种filter进行测试,我们分析的文本为:Please email clark.ma@gmail.com by 09, re:aa-bb
 
 
StandardAnalyzer
1 : [please : 0 ->  6 : ]
2 : [email : 7 ->  12 : ]
3 : [clark.ma : 13 ->  21 : ]
4 : [gmail.com : 22 ->  31 : ]
6 : [09 : 35 ->  37 : ]
7 : [re:aa : 39 ->  44 : ]
8 : [bb : 45 ->  47 : ]
去除空格,标点符号,@;
 
ClassicAnalyzer
1 : [please : 0 ->  6 : ]
2 : [email : 7 ->  12 : ]
3 : [clark.ma@gmail.com : 13 ->  31 : ]
5 : [09 : 35 ->  37 : ]
6 : [re : 39 ->  41 : ]
7 : [aa : 42 ->  44 : ]
8 : [bb : 45 ->  47 : ]
能够识别互联网域名和email地址,
LetterTokenizer
1 : [Please : 0 ->  6 : word]
2 : [email : 7 ->  12 : word]
3 : [clark : 13 ->  18 : word]
4 : [ma : 19 ->  21 : word]
5 : [gmail : 22 ->  27 : word]
6 : [com : 28 ->  31 : word]
7 : [by : 32 ->  34 : word]
8 : [re : 39 ->  41 : word]
9 : [aa : 42 ->  44 : word]
10 : [bb : 45 ->  47 : word]
丢弃掉所有的非文本字符
KeywordTokenizer
1 : [Please email clark.ma@gmail.com by 09, re:aa-bb : 0 ->  47 : word]
 
将整个文本当做一个词元
LowerCaseTokenizer
1 : [please : 0 ->  6 : word]
2 : [email : 7 ->  12 : word]
3 : [clark : 13 ->  18 : word]
4 : [ma : 19 ->  21 : word]
5 : [gmail : 22 ->  27 : word]
6 : [com : 28 ->  31 : word]
7 : [by : 32 ->  34 : word]
8 : [re : 39 ->  41 : word]
9 : [aa : 42 ->  44 : word]
10 : [bb : 45 ->  47 : word]
对其所有非文本字符,过滤空格,标点符号,将所有的大写转换为小写
NGramTokenizer
可以定义最小minGramSize(default=1), 最大切割值maxGramSize(default=2),生成的词元较多。
假设minGramSize=2, maxGramSize=3,输入abcde,输出:ab abc abc bc bcd cd cde
读取字段并在给定范围内生成多个token
PathHierachyTokenizer
c:\my document\filea\fileB,new PathHierarchyTokenizer('\\', '/')
1 : [c: : 0 ->  2 : word][c:/my document : 0 ->  14 : word][c:/my document/filea : 0 ->  20 : word][c:/my document/filea/fileB : 0 ->  26 : word]
使用新的文件目录符去代替文本中的目录符
PatternTokenizer
需要两个参数,pattern正则表达式,group分组。
pattern=”[A-Z][A-Za-z]*” group=”0″
输入: “Hello. My name is Inigo Montoya. You killed my father. Prepare to die.”
输出: “Hello”, “My”, “Inigo”, “Montoya”, “You”, “Prepare”
进行正则表达式分组匹配
UAX29URLEmailTokenizer
1 : [Please : 0 ->  6 : ]
2 : [email : 7 ->  12 : ]
3 : [clark.ma@gmail.com : 13 ->  31 : ]
4 : [by : 32 ->  34 : ]
5 : [09 : 35 ->  37 : ]
6 : [re:aa : 39 ->  44 : ]
7 : [bb : 45 ->  47 : ]
去除空格和标点符号,但保留url和email连接
 
 
Lucene内置的TokenFilter
 
过滤器能够组成一个链表,每一个过滤器处理上一个过滤器处理过后的词元,所以过滤器的排序很有意义,第一个过滤器最好能处理大部分常规情况,最后一个过滤器是带有针对特殊性的。
 
 
ClassicFilter “I.B.M. cat’s can’t” ==> “I.B.M”, “cat”, “can’t” 经典过滤器,可以过滤无意义的标点,需要搭配ClassicTokenizer使用
ApostropheFilter
1 : [abc : 0 ->  3 : ]
2 : [I.B.M : 4 ->  9 : ]
3 : [cat : 10 ->  15 : ]
4 : [can : 16 ->  21 : ]
省略所有的上撇号
LowerCaseFilter
1 : [i.b.m : 0 ->  5 : ]
2 : [cat's : 6 ->  11 : ]
3 : [can't : 12 ->  17 : ]
转换成小写
TypeTokenFilter
如果email_type.txt设置为ALPHANUM,会保留该类型的所有分析结果,否则会被删除掉
给定一个文件并设置成白名单还是黑名单,只有符合条件的type才能被保留
TrimFilter   去掉空格
TruncateTokenFilter
1 : [I.B : 0 ->  5 : ]
2 : [cat : 6 ->  11 : ]
3 : [can : 12 ->  17 : ]
截取文本长度,左边为prefixLength=3
PatternCaptureGroupFilter 可配置属性pattern和preserve_original(是否保留原文) 从输入文本中保留能够匹配正则表达式的
PatternReplaceFilter    
StopFilter   创建一个自定义的停词词库列表,过滤器遇到停词就直接过滤掉
KeepWordFilter 与StopFilter的含义正好相反  
LengthFilter 设置一个最小值min和最大值max 为词元的长度设置在一个固定范围
WordDelimiterFilter

A:-符号 wi-fi 变成wi fi
B:驼峰写法 LoveSong 变成 love song 对应参数
C:字母-数字 xiaomi100 变成 xiaomi 100
D:–符号 like–me 变成 like me
E:尾部的’s符号 mother’s 变成 mother
F:-符号 wi-fi 变成 wifi 于规则A不同的是没有分成两个词元
G:-符号,数字之间 400-884586 变成 400884586
H:-符号 无论字母还是数字,都取消-符号 wi-fi-4 变成wifi4

 
其他参数
splitOnCaseChange=”1″ 默认1,关闭设为0 规则B
generateWordParts=”1″ 默认1 ,对应规则AB
generateNumberParts=”1″ 默认1 对应规则F
catenateWords=”1″ 默认0 对应规则A
splitOnNumerics=”1″ 默认1,关闭设0 规则C
stemEnglishPossessive 默认1,关闭设0 规则E
catenateNumbers=”1″ 默认0 对应规则G
catenateAll=”1″ 默认0 对应规则 H
preserveOriginal=”1″ 默认0 对词元不做任何修改 除非有其他参数改变了词元
protected=”protwords.txt” 指定这个单词列表的单词不被修改
通过分隔符分割单元
 
 
 
 
 
 
 
 
 
 

推荐阅读
  • C#实现文件的压缩与解压
    2019独角兽企业重金招聘Python工程师标准一、准备工作1、下载ICSharpCode.SharpZipLib.dll文件2、项目中引用这个dll二、文件压缩与解压共用类 ... [详细]
  • 零拷贝技术是提高I/O性能的重要手段,常用于Java NIO、Netty、Kafka等框架中。本文将详细解析零拷贝技术的原理及其应用。 ... [详细]
  • 字节流(InputStream和OutputStream),字节流读写文件,字节流的缓冲区,字节缓冲流
    字节流抽象类InputStream和OutputStream是字节流的顶级父类所有的字节输入流都继承自InputStream,所有的输出流都继承子OutputStreamInput ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • 本文介绍了如何利用 Delphi 中的 IdTCPServer 和 IdTCPClient 控件实现高效的文件传输。这些控件在默认情况下采用阻塞模式,并且服务器端已经集成了多线程处理,能够支持任意大小的文件传输,无需担心数据包大小的限制。与传统的 ClientSocket 相比,Indy 控件提供了更为简洁和可靠的解决方案,特别适用于开发高性能的网络文件传输应用程序。 ... [详细]
  • 本文介绍了如何利用ObjectMapper实现JSON与JavaBean之间的高效转换。ObjectMapper是Jackson库的核心组件,能够便捷地将Java对象序列化为JSON格式,并支持从JSON、XML以及文件等多种数据源反序列化为Java对象。此外,还探讨了在实际应用中如何优化转换性能,以提升系统整体效率。 ... [详细]
  • Java能否直接通过HTTP将字节流绕过HEAP写入SD卡? ... [详细]
  • 本文探讨了Go语言中iota关键字的具体含义及其在常量声明中的应用。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 本文详细解析了 Android 系统启动过程中的核心文件 `init.c`,探讨了其在系统初始化阶段的关键作用。通过对 `init.c` 的源代码进行深入分析,揭示了其如何管理进程、解析配置文件以及执行系统启动脚本。此外,文章还介绍了 `init` 进程的生命周期及其与内核的交互方式,为开发者提供了深入了解 Android 启动机制的宝贵资料。 ... [详细]
  • 在Android平台中,播放音频的采样率通常固定为44.1kHz,而录音的采样率则固定为8kHz。为了确保音频设备的正常工作,底层驱动必须预先设定这些固定的采样率。当上层应用提供的采样率与这些预设值不匹配时,需要通过重采样(resample)技术来调整采样率,以保证音频数据的正确处理和传输。本文将详细探讨FFMpeg在音频处理中的基础理论及重采样技术的应用。 ... [详细]
  • 本文探讨了如何利用Java代码获取当前本地操作系统中正在运行的进程列表及其详细信息。通过引入必要的包和类,开发者可以轻松地实现这一功能,为系统监控和管理提供有力支持。示例代码展示了具体实现方法,适用于需要了解系统进程状态的开发人员。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 在Django中提交表单时遇到值错误问题如何解决?
    在Django项目中,当用户提交包含多个选择目标的表单时,可能会遇到值错误问题。本文将探讨如何通过优化表单处理逻辑和验证机制来有效解决这一问题,确保表单数据的准确性和完整性。 ... [详细]
author-avatar
大爱走钢索的人_738
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有