热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

webcollector确定所有的请求都请求完毕的简单介绍

本文目录一览:1、爬虫,有什么框架比httpclient更快

本文目录一览:


  • 1、爬虫,有什么框架比httpclient更快


  • 2、webcollector爬取的css如何去掉标签


  • 3、爬虫框架都有什么?


  • 4、webcollector怎么指定url


  • 5、开源爬虫框架各有什么优缺点?

爬虫,有什么框架比httpclient更快

开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:上面说的爬虫,基本可以分3类:1.分布式爬虫:Nutch

2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector

3. 非JAVA单机爬虫:scrapy

第一类:分布式爬虫

爬虫使用分布式,主要是解决两个问题:

1)海量URL管理

2)网速

现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:

1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。

2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。

3)Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。而且Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text文本)。

4)用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。

5)很多人说Nutch2有gora,可以持久化数据到avro文件、hbase、mysql等。很多人其实理解错了,这里说的持久化数据,是指将URL信息(URL管理所需要的数据)存放到avro、hbase、mysql。并不是你要抽取的结构化数据。其实对大多数人来说,URL信息存在哪里无所谓。

6)Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。如果想用hbase配合nutch(大多数人用nutch2就是为了用hbase),只能使用0.90版本左右的hbase,相应的就要将hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比较有误导作用,Nutch2的教程有两个,分别是Nutch1.x和Nutch2.x,这个Nutch2.x官网上写的是可以支持到hbase 0.94。但是实际上,这个Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。

所以,如果你不是要做搜索引擎,尽量不要选择Nutch作为爬虫。有些团队就喜欢跟风,非要选择Nutch来开发精抽取的爬虫,其实是冲着Nutch的名气(Nutch作者是Doug Cutting),当然最后的结果往往是项目延期完成。

如果你是要做搜索引擎,Nutch1.x是一个非常好的选择。Nutch1.x和solr或者es配合,就可以构成一套非常强大的搜索引擎了。如果非要用Nutch2的话,建议等到Nutch2.3发布再看。目前的Nutch2是一个非常不稳定的版本。

第二类:JAVA单机爬虫

这里把JAVA爬虫单独分为一类,是因为JAVA在网络爬虫这块的生态圈是非常完善的。相关的资料也是最全的。这里可能有争议,我只是随便扯淡。

其实开源网络爬虫(框架)的开发非常简单,难问题和复杂的问题都被以前的人解决了(比如DOM树解析和定位、字符集检测、海量URL去重),可以说是毫无技术含量。包括Nutch,其实Nutch的技术难点是开发hadoop,本身代码非常简单。网络爬虫从某种意义来说,类似遍历本机的文件,查找文件中的信息。没有任何难度可言。之所以选择开源爬虫框架,就是为了省事。比如爬虫的URL管理、线程池之类的模块,谁都能做,但是要做稳定也是需要一段时间的调试和修改的。

对于爬虫的功能来说。用户比较关心的问题往往是:

1)爬虫支持多线程么、爬虫能用代理么、爬虫会爬取重复数据么、爬虫能爬取JS生成的信息么?

不支持多线程、不支持代理、不能过滤重复URL的,那都不叫开源爬虫,那叫循环执行http请求。

能不能爬js生成的信息和爬虫本身没有太大关系。爬虫主要是负责遍历网站和下载页面。爬js生成的信息和网页信息抽取模块有关,往往需要通过模拟浏览器(htmlunit,selenium)来完成。这些模拟浏览器,往往需要耗费很多的时间来处理一个页面。所以一种策略就是,使用这些爬虫来遍历网站,遇到需要解析的页面,就将网页的相关信息提交给模拟浏览器,来完成JS生成信息的抽取。

2)爬虫可以爬取ajax信息么?

网页上有一些异步加载的数据,爬取这些数据有两种方法:使用模拟浏览器(问题1中描述过了),或者分析ajax的http请求,自己生成ajax请求的url,获取返回的数据。如果是自己生成ajax请求,使用开源爬虫的意义在哪里?其实是要用开源爬虫的线程池和URL管理功能(比如断点爬取)。

如果我已经可以生成我所需要的ajax请求(列表),如何用这些爬虫来对这些请求进行爬取?

爬虫往往都是设计成广度遍历或者深度遍历的模式,去遍历静态或者动态页面。爬取ajax信息属于deep web(深网)的范畴,虽然大多数爬虫都不直接支持。但是也可以通过一些方法来完成。比如WebCollector使用广度遍历来遍历网站。爬虫的第一轮爬取就是爬取种子集合(seeds)中的所有url。简单来说,就是将生成的ajax请求作为种子,放入爬虫。用爬虫对这些种子,进行深度为1的广度遍历(默认就是广度遍历)。

3)爬虫怎么爬取要登陆的网站?

这些开源爬虫都支持在爬取时指定COOKIEs,模拟登陆主要是靠COOKIEs。至于COOKIEs怎么获取,不是爬虫管的事情。你可以手动获取、用http请求模拟登陆或者用模拟浏览器自动登陆获取COOKIE。

4)爬虫怎么抽取网页的信息?

开源爬虫一般都会集成网页抽取工具。主要支持两种规范:CSS SELECTOR和XPATH。至于哪个好,这里不评价。

5)爬虫怎么保存网页的信息?

有一些爬虫,自带一个模块负责持久化。比如webmagic,有一个模块叫pipeline。通过简单地配置,可以将爬虫抽取到的信息,持久化到文件、数据库等。还有一些爬虫,并没有直接给用户提供数据持久化的模块。比如crawler4j和webcollector。让用户自己在网页处理模块中添加提交数据库的操作。至于使用pipeline这种模块好不好,就和操作数据库使用ORM好不好这个问题类似,取决于你的业务。

6)爬虫被网站封了怎么办?

爬虫被网站封了,一般用多代理(随机代理)就可以解决。但是这些开源爬虫一般没有直接支持随机代理的切换。所以用户往往都需要自己将获取的代理,放到一个全局数组中,自己写一个代理随机获取(从数组中)的代码。

7)网页可以调用爬虫么?

爬虫的调用是在Web的服务端调用的,平时怎么用就怎么用,这些爬虫都可以使用。

8)爬虫速度怎么样?

单机开源爬虫的速度,基本都可以讲本机的网速用到极限。爬虫的速度慢,往往是因为用户把线程数开少了、网速慢,或者在数据持久化时,和数据库的交互速度慢。而这些东西,往往都是用户的机器和二次开发的代码决定的。这些开源爬虫的速度,都很可以。

9)明明代码写对了,爬不到数据,是不是爬虫有问题,换个爬虫能解决么?

如果代码写对了,又爬不到数据,换其他爬虫也是一样爬不到。遇到这种情况,要么是网站把你封了,要么是你爬的数据是Javascript生成的。爬不到数据通过换爬虫是不能解决的。

10)哪个爬虫可以判断网站是否爬完、那个爬虫可以根据主题进行爬取?

爬虫无法判断网站是否爬完,只能尽可能覆盖。

至于根据主题爬取,爬虫之后把内容爬下来才知道是什么主题。所以一般都是整个爬下来,然后再去筛选内容。如果嫌爬的太泛,可以通过限制URL正则等方式,来缩小一下范围。

11)哪个爬虫的设计模式和构架比较好?

设计模式纯属扯淡。说软件设计模式好的,都是软件开发完,然后总结出几个设计模式。设计模式对软件开发没有指导性作用。用设计模式来设计爬虫,只会使得爬虫的设计更加臃肿。

至于构架,开源爬虫目前主要是细节的数据结构的设计,比如爬取线程池、任务队列,这些大家都能控制好。爬虫的业务太简单,谈不上什么构架。

所以对于JAVA开源爬虫,我觉得,随便找一个用的顺手的就可以。如果业务复杂,拿哪个爬虫来,都是要经过复杂的二次开发,才可以满足需求。

第三类:非JAVA单机爬虫

在非JAVA语言编写的爬虫中,有很多优秀的爬虫。这里单独提取出来作为一类,并不是针对爬虫本身的质量进行讨论,而是针对larbin、scrapy这类爬虫,对开发成本的影响。

先说python爬虫,python可以用30行代码,完成JAVA 50行代码干的任务。python写代码的确快,但是在调试代码的阶段,python代码的调试往往会耗费远远多于编码阶段省下的时间。使用python开发,要保证程序的正确性和稳定性,就需要写更多的测试模块。当然如果爬取规模不大、爬取业务不复杂,使用scrapy这种爬虫也是蛮不错的,可以轻松完成爬取任务。

对于C++爬虫来说,学习成本会比较大。而且不能只计算一个人的学习成本,如果软件需要团队开发或者交接,那就是很多人的学习成本了。软件的调试也不是那么容易。

还有一些ruby、php的爬虫,这里不多评价。的确有一些非常小型的数据采集任务,用ruby或者php很方便。但是选择这些语言的开源爬虫,一方面要调研一下相关的生态圈,还有就是,这些开源爬虫可能会出一些你搜不到的BUG(用的人少、资料也少)

End.

webcollector爬取的css如何去掉标签

import cn.edu.hfut.dmic.webcollector.model.CrawlDatums;

import cn.edu.hfut.dmic.webcollector.model.Page;

import cn.edu.hfut.dmic.webcollector.plugin.berkeley.BreadthCrawler;

public class TutorialCrawler extends BreadthCrawler {

public TutorialCrawler(String crawlPath, boolean autoParse) {

super(crawlPath, autoParse);

}

/*

可以往next中添加希望后续爬取的任务,任务可以是URL或者CrawlDatum

爬虫不会重复爬取任务,从2.20版之后,爬虫根据CrawlDatum的key去重,而不是URL

因此如果希望重复爬取某个URL,只要将CrawlDatum的key设置为一个历史中不存在的值即可

例如增量爬取,可以使用 爬取时间+URL作为key。

新版本中,可以直接通过 page.select(css选择器)方法来抽取网页中的信息,等价于

page.getDoc().select(css选择器)方法,page.getDoc()获取到的是Jsoup中的

Document对象,细节请参考Jsoup教程

*/

@Override

public void visit(Page page, CrawlDatums next) {

if (page.matchUrl(".*/article/details/.*")) {

String title = page.select("div[class=article_title]").first().text();

String author = page.select("div[id=blog_userface]").first().text();

System.out.println("title:" + title + "\tauthor:" + author);

}

}

public static void main(String[] args) throws Exception {

TutorialCrawler crawler = new TutorialCrawler("crawler", true);

crawler.addSeed(".*");

crawler.addRegex(".*/article/details/.*");

/*可以设置每个线程visit的间隔,这里是毫秒*/

//crawler.setVisitInterval(1000);

/*可以设置http请求重试的间隔,这里是毫秒*/

//crawler.setRetryInterval(1000);

crawler.setThreads(30);

crawler.start(2);

}

}

爬虫框架都有什么?

主流爬虫框架通常由以下部分组成:

1.种子URL库:URL用于定位互联网中的各类资源,如最常见的网页链接,还有常见的文件资源、流媒体资源等。种子URL库作为网络爬虫的入口,标识出爬虫应该从何处开始运行,指明了数据来源。

2.数据下载器:针对不同的数据种类,需要不同的下载方式。主流爬虫框架通畅提供多种数据下载器,用来下载不同的资源,如静态网页下载器、动态网页下载器、FTP下载器等。

3.过滤器:对于已经爬取的URL,智能的爬虫需要对其进行过滤,以提高爬虫的整体效率。常用的过滤器有基于集合的过滤器、基于布隆过滤的过滤器等。

4.流程调度器:合理的调度爬取流程,也可以提高爬虫的整体效率。在流程调度器中,通常提供深度优先爬取、广度优先爬取、订制爬取等爬取策略。同时提供单线程、多线程等多种爬取方式。

webcollector怎么指定url

右键点击firefox图标,弹出动态菜单,选择 属性 点击

在属性对话框中选择 快捷方式,复制 目标(T)后面文本框的内容 ;起始位置后面文本框的内容一会也要用到。

将文本框内容复制到记事本中,一个空格,后面复制要访问的网址(url) ,如图,注意前面浏览器路径使用双引号,后面网址不用双引号

打开 开始菜单-〉程序-〉附件-〉系统工具-〉计划任务 (xp系统下)

右键点击,选择 新建计划任务

给新任务计划命名后,右键点击其属性进入对话框,在运行后的文本框,粘贴刚才记事本的内容;起始于后的文本框,粘贴前面快捷方式属性对话框中起始位置后文本框的内容

在计划和设置标签 设置自己的要求后确定就可以了!

开源爬虫框架各有什么优缺点?

首先爬虫框架有三种

分布式爬虫:Nutch

JAVA单机爬虫:Crawler4j,WebMagic,WebCollector

非JAVA单机爬虫:scrapy

第一类:分布式爬虫

优点:

海量URL管理

网速快

缺点:

Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。

用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非。

Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫。

Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。

Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text)

用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。

Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。

第二类:JAVA单机爬虫

优点:

支持多线程。

支持代理。

能过滤重复URL的。

负责遍历网站和下载页面。爬js生成的信息和网页信息抽取模块有关,往往需要通过模拟浏览器(htmlunit,selenium)来完成。

缺点:

设计模式对软件开发没有指导性作用。用设计模式来设计爬虫,只会使得爬虫的设计更加臃肿。

第三类:非JAVA单机爬虫

优点:

先说python爬虫,python可以用30行代码,完成JAVA

50行代码干的任务。python写代码的确快,但是在调试代码的阶段,python代码的调试往往会耗费远远多于编码阶段省下的时间。

使用python开发,要保证程序的正确性和稳定性,就需要写更多的测试模块。当然如果爬取规模不大、爬取业务不复杂,使用scrapy这种爬虫也是蛮不错的,可以轻松完成爬取任务。

缺点:

bug较多,不稳定。

爬虫可以爬取ajax信息么?

网页上有一些异步加载的数据,爬取这些数据有两种方法:使用模拟浏览器(问题1中描述过了),或者分析ajax的http请求,自己生成ajax请求的url,获取返回的数据。如果是自己生成ajax请求,使用开源爬虫的意义在哪里?其实是要用开源爬虫的线程池和URL管理功能(比如断点爬取)。

如果我已经可以生成我所需要的ajax请求(列表),如何用这些爬虫来对这些请求进行爬取?      

爬虫往往都是设计成广度遍历或者深度遍历的模式,去遍历静态或者动态页面。爬取ajax信息属于deepweb(深网)的范畴,虽然大多数爬虫都不直接支持。但是也可以通过一些方法来完成。比如WebCollector使用广度遍历来遍历网站。爬虫的第一轮爬取就是爬取种子集合(seeds)中的所有url。简单来说,就是将生成的ajax请求作为种子,放入爬虫。用爬虫对这些种子,进行深度为1的广度遍历(默认就是广度遍历)。

爬虫怎么爬取要登陆的网站?

这些开源爬虫都支持在爬取时指定COOKIEs,模拟登陆主要是靠COOKIEs。至于COOKIEs怎么获取,不是爬虫管的事情。你可以手动获取、用http请求模拟登陆或者用模拟浏览器自动登陆获取COOKIE。

爬虫怎么抽取网页的信息?

开源爬虫一般都会集成网页抽取工具。主要支持两种规范:CSSSELECTOR和XPATH。

网页可以调用爬虫么?

爬虫的调用是在Web的服务端调用的,平时怎么用就怎么用,这些爬虫都可以使用。

爬虫速度怎么样?

单机开源爬虫的速度,基本都可以讲本机的网速用到极限。爬虫的速度慢,往往是因为用户把线程数开少了、网速慢,或者在数据持久化时,和数据库的交互速度慢。而这些东西,往往都是用户的机器和二次开发的代码决定的。这些开源爬虫的速度,都很可以。


推荐阅读
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 系统转换的三种方法及其具体应用分析
    系统转换是信息技术领域中常见的任务,本文详细探讨了三种主要的系统转换方法及其具体应用场景。这些方法包括:代码迁移、数据迁移和平台迁移。文章通过实例分析了每种方法的优势和局限性,并提供了实际操作中的注意事项和技术要点。例如,代码迁移适用于从VB6获取网页源码,数据迁移在Ubuntu中用于隐藏侧边栏,而平台迁移则涉及Tomcat 6.0的使用和谷歌爬虫的测试。此外,文章还讨论了蓝翰互动PHP面试和5118 SEO工具在系统转换中的应用,为读者提供了全面的技术参考。 ... [详细]
  • Hadoop平台警告解决:无法加载本机Hadoop库的全面应对方案
    本文探讨了在Hadoop平台上遇到“无法加载本机Hadoop库”警告的多种解决方案。首先,通过修改日志配置文件来忽略该警告,这一方法被证明是有效的。其次,尝试指定本地库的路径,但未能解决问题。接着,尝试不使用Hadoop本地库,同样没有效果。然后,通过替换现有的Hadoop本地库,成功解决了问题。最后,根据Hadoop的源代码自行编译本地库,也达到了预期的效果。以上方法适用于macOS系统。 ... [详细]
  • Python 程序转换为 EXE 文件:详细解析 .py 脚本打包成独立可执行文件的方法与技巧
    在开发了几个简单的爬虫 Python 程序后,我决定将其封装成独立的可执行文件以便于分发和使用。为了实现这一目标,首先需要解决的是如何将 Python 脚本转换为 EXE 文件。在这个过程中,我选择了 Qt 作为 GUI 框架,因为之前对此并不熟悉,希望通过这个项目进一步学习和掌握 Qt 的基本用法。本文将详细介绍从 .py 脚本到 EXE 文件的整个过程,包括所需工具、具体步骤以及常见问题的解决方案。 ... [详细]
  • 利用爬虫技术抓取数据,结合Fiddler与Postman在Chrome中的应用优化提交流程
    本文探讨了如何利用爬虫技术抓取目标网站的数据,并结合Fiddler和Postman工具在Chrome浏览器中的应用,优化数据提交流程。通过详细的抓包分析和模拟提交,有效提升了数据抓取的效率和准确性。此外,文章还介绍了如何使用这些工具进行调试和优化,为开发者提供了实用的操作指南。 ... [详细]
  • 在本文中,我们将为 HelloWorld 项目添加视图组件,以确保控制器返回的视图路径能够正确映射到指定页面。这一步骤将为后续的测试和开发奠定基础。首先,我们将介绍如何配置视图解析器,以便 SpringMVC 能够识别并渲染相应的视图文件。 ... [详细]
  • 在尝试对 QQmlPropertyMap 类进行测试驱动开发时,发现其派生类中无法正常调用槽函数或 Q_INVOKABLE 方法。这可能是由于 QQmlPropertyMap 的内部实现机制导致的,需要进一步研究以找到解决方案。 ... [详细]
  • 您的数据库配置是否安全?DBSAT工具助您一臂之力!
    本文探讨了Oracle提供的免费工具DBSAT,该工具能够有效协助用户检测和优化数据库配置的安全性。通过全面的分析和报告,DBSAT帮助用户识别潜在的安全漏洞,并提供针对性的改进建议,确保数据库系统的稳定性和安全性。 ... [详细]
  • 优化Vite 1.0至2.0升级过程中遇到的某些代码块过大问题解决方案
    本文详细探讨了在将项目从 Vite 1.0 升级到 2.0 的过程中,如何解决某些代码块过大的问题。通过具体的编码示例,文章提供了全面的解决方案,帮助开发者有效优化打包性能。 ... [详细]
  • 为了在Hadoop 2.7.2中实现对Snappy压缩和解压功能的原生支持,本文详细介绍了如何重新编译Hadoop源代码,并优化其Native编译过程。通过这一优化,可以显著提升数据处理的效率和性能。此外,还探讨了编译过程中可能遇到的问题及其解决方案,为用户提供了一套完整的操作指南。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 在HTML5应用中,Accordion(手风琴,又称抽屉)效果因其独特的展开和折叠样式而广泛使用。本文探讨了三种不同的Accordion交互效果,通过层次结构优化信息展示和页面布局,提升用户体验。这些效果不仅增强了视觉效果,还提高了内容的可访问性和互动性。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有