热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

25个Java机器学习工具和库

:本篇文章主要介绍了25个Java机器学习工具和库,对于PHP教程有兴趣的同学可以参考一下。
25个Java机器学习工具和库
IT 行业越来越火,随着更多的生力军加入IT的大家庭,Java所占的比重也越来越大,下面为大家整理了一些学习工具。
1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。
2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。
3.MEKA项目提供了一个面向多标签学习和评价方法的开源实现。在多标签分类中,我们要预测每个输入实例的多个输出变量。这与“普通”情况下只涉及一个单一目标变量的情形不同。此外,MEKA基于WEKA的机器学习工具包。
4. Advanced Data mining And Machine learning System(ADAMS)是一种新型的柔性工作流引擎,旨在迅速建立并保持真实世界的复杂知识流,它是基于GPLv3发行的。
5. Environment for Developing KDD-Applications Supported by Index-Structure(ELKI)是一款基于Java的开源(AGPLv3)数据挖掘软件。ELKI主要集中于算法研究,重点研究聚类分析中的无监督方法和异常检测。
6. Mallet是一个基于Java的面向文本文件的机器学习工具包。Mallet支持分类算法,如最大熵、朴素贝叶斯和决策树分类。
7. Encog是一个先进的机器学习框架,集成了支持向量机(SVM)、人工神经网络、遗传算法、贝叶斯网络、隐马尔可夫模型(HMM)、遗传编程和遗传算法。
8. Datumbox机器学习框架是一个用Java编写的开源框架,允许快速地开发机器学习和统计应用。该框架的核心重点包括大量的机器学习算法以及统计测试,能够处理中等规模的数据集。
9. Deeplearning4j是使用Java和Scala编写的第一个商业级的、开源的、分布式深入学习库。其设计的目的是用于商业环境中,而不是作为一个研究工具。
10. Mahout是一个内置算法的机器学习框架。Mahout-Samsara帮助人们创建他们自己的数学,并提供了一些现成的算法实现。
11.Rapid Miner是德国多特蒙特技术大学开发的。它为开发者开发应用程序提供了一个GUI(图形用户界面)和Java API。它还提供了一些机器学习算法,用来做数据处理、可视化以及建模。
12. Apache SAMOA是一个机器学习(ML)框架,内嵌面向分布式流ML算法的编程抽象,并且允许在没有直接处理底层分布式流处理引擎(DSPEe,如Apache Storm、Apache S4和Apache samza)复杂性的情况下,开发新的ML算法。用户可以开发分布式流ML算法,而且可以在多个DSPEs上执行。
13. Neuroph通过提供支持创建、训练和保存神经网络的Java网络库和GUI工具,简化了神经网络开发。
14. Oryx 2是一个建立在Apache Spark和Apache Kafka的Lambda架构实现,但随着实时大规模机器学习而逐渐开始专业化。这是一个用于构建应用程序的框架,但也包括打包,以及面向协同过滤、分类、回归和聚类的端到端的应用程序。
15. Stanford Classifier是一个机器学习工具,它可以将数据项归置到一个类别。一个概率分类器,比如这个,它可以对一个数据项给出类分配的概率分布。该软件是最大熵分类器的一个Java实现。
16.io是一个Retina API,有着快速精确的类似大脑的自然语言处理算法。
17.JSAT是一个快速入门的机器学习库。该库是我在业余时间开发的,基于GPL3发行的。库中的一部分内容可自主学习,例如所有的代码都是独立的。JSAT没有外部依赖,而且是纯Java编写的。
18. N-Dimensional Arrays for Java(ND4J)是一个用于JVM的科学计算库。它们是用来在生产环境中使用的,这表明例程的设计是以最小的内存需求来运行的。
19. Java Machine Learning Library(Java机器学习库)是一系列机器学习算法的相关实现。这些算法,无论是源代码还是文档,都编写的很出色。其主要语言是Java。
20. Java-ML是一个使用Java编写的一系列机器学习算法的Java API。它只提供了一个标准的算法接口。
21. MLlib (Spark)是Apache Spark的可扩展机器学习库。虽然是Java,但该库与平台还支持Java,Scala和Python绑定。此库是最新的,并且算法很多。
22. H2O是用于智能应用的机器学习API。它在大数据上对统计学、机器学习和数学进行了规模化。H2O可扩展,开发者可以在核心部分使用简单的数学知识。
23. WalnutiQ是人脑部分面向对象模型,有着理论常用的学习算法(正在向简单强烈的情感人工智能模型方向研究)。
24. RankLib是一个排名学习算法库。目前已经实现八种流行的算法。
25. htm.java(基于Java的Hierarchical Temporal Memory算法实现)是一个面向智能计算的Numenta平台的Java接口。
上面是目前所用的比较多的Java的学习工具了,大家如果发现了比这更加实用的或者其他的编程语言如PHP的工具,也可以一起讨论啊。
兄弟会高洛峰免费收徒:http://www.hdb.com/party/lzcw-comm.html
免费领取LAMP兄弟连原创PHP视频教程光盘/《细说PHP》精要版,详情咨询官网客服:
http://www.lampbrother.net

以上就介绍了25个Java机器学习工具和库,包括了方面的内容,希望对PHP教程有兴趣的朋友有所帮助。

推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 本文详细介绍了如何配置Apache Flume与Spark Streaming,实现高效的数据传输。文中提供了两种集成方案,旨在帮助用户根据具体需求选择最合适的配置方法。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 深入解析:OpenShift Origin环境下的Kubernetes Spark Operator
    本文探讨了如何在OpenShift Origin平台上利用Kubernetes Spark Operator来管理和部署Apache Spark集群与应用。作为Radanalytics.io项目的一部分,这一开源工具为大数据处理提供了强大的支持。 ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • PySpark实战:高效使用DataFrame超越RDD
    本文深入探讨了PySpark中DataFrame的使用方法及其相对于传统RDD的优势,旨在帮助开发者更好地理解和利用这一强大工具。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 探索Python编程的价值与应用
    本文探讨了学习Python的重要性和广泛的应用场景,从个人技能提升到职业发展的多个方面进行了详细解析。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 掌握Python岗位,你需要了解的关键技能
    最近,在社交平台脉脉上,一条关于Python岗位的消息引起了广泛关注。本文将探讨Python岗位的实际价值,并深入解析阿里巴巴等大公司在面试Python开发者时常见的问题。 ... [详细]
  • 致信息安全爱好者的成长指南
    本文旨在为信息安全爱好者提供一份详尽的成长指南,涵盖从学习心态调整到具体技能提升的各个方面。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • Logback使用小结
    1一定要使用slf4j的jar包,不要使用apachecommons的jar。否则滚动生成文件不生效,不滚动的时候却生效~~importorg.slf ... [详细]
author-avatar
你永远不冫会懂我的心O_751
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有