热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

tf.split张量拆分(很简单)

tf.split的作用就是将张量按指定维度和分割个数拆分为子张量列表。源码解释tf.split(value,num_or_size_splits,axis0,numNone,n

tf.split的作用就是将张量按指定维度和分割个数拆分为子张量列表。

源码解释

tf.split(value, num_or_size_splits, axis=0, num=None, name='split'
)参数:value: 张量
num_or_size_splits:int或者一维张量或者list,将根据axis所指向的维度进行切分数据。可以理解为切这个张量的分割量(注意不是比例)。当是一个整数时,表示按该值均分,比如2,则一分为二,当是列表时,则按列表的元素值来分。比如假如原维数值为10,那么[2,8]则表示切分为28.这要看例子就一目了然
axis: 切分的维度,即根据哪个维度来把这个张量给大卸八块。
num: 这个不用管没什么用
name: 该操作的名称


import tensorflow as tfa = tf.random.normal(shape=(10,10,1))# 将第一维按2,3,5的个数分割
t1,t2,t3 = tf.split(a,num_or_size_splits=[2,3,5],axis=0)
print(t1.shape) # (2, 10, 1)
print(t2.shape) # (3, 10, 1)
print(t3.shape) # (5, 10, 1)# 将第二维均分成2部分
m,n = tf.split(a,num_or_size_splits=2,axis=1)
print(m.shape) # (10, 5, 1)
print(n.shape) # (10, 5, 1)# 将第二维按 2,3,5的个数分割
x,y,z = tf.split(a,num_or_size_splits=[2,3,5],axis=1)
print(x.shape) # (10, 2, 1)
print(y.shape) # (10, 3, 1)
print(z.shape) # (10, 5, 1)

注意:

num_or_size_splits切分值,无论是均分还是按列表个数分,都必须完完全全被分割完整,不能有小数或者多余维度剩下

比如:第二维度均分三份,报错!
原因第二维是10的长度,不能被3整除

r1,r2,r3 = tf.split(a,num_or_size_splits=3,axis=1) # 报错

再比如:
第二维按[2,2,2]的个数来分配,报错!
原因第二维是10的长度,按[2,2,2]分配后还剩4维没有分配,同样按[2,8,2]来分不用想了肯定报错,本就10个怎么还能分出多2个。

u1,u2,u3 = tf.split(a,num_or_size_splits=[2,2,2],axis=1) # 报错

总结:

tf.split(value, num_or_size_splits, axis=0, num=None, name=‘split’)
value: 为原张量
num_or_size_splits:为分割量,如果为单个整数,则表示按该整数均分,如果是list则按元素多少分割张量。分割后的个部分数量必须能完完全全把原维度的数量分割干净,不能有小数或多余更不能少。
axis:指定张量维度,分割需要依据此维度来进行分割
num:不用管,没多大用
name: 不用管,操作名称


推荐阅读
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • Python内置模块详解:正则表达式re模块的应用与解析
    正则表达式是一种强大的文本处理工具,通过特定的字符序列来定义搜索模式。本文详细介绍了Python内置的`re`模块,探讨了其在字符串匹配、验证和提取中的应用。例如,可以通过正则表达式验证电子邮件地址、电话号码、QQ号、密码、URL和IP地址等。此外,文章还深入解析了`re`模块的各种函数和方法,提供了丰富的示例代码,帮助读者更好地理解和使用这一工具。 ... [详细]
  • 本文介绍了UUID(通用唯一标识符)的概念及其在JavaScript中生成Java兼容UUID的代码实现与优化技巧。UUID是一个128位的唯一标识符,广泛应用于分布式系统中以确保唯一性。文章详细探讨了如何利用JavaScript生成符合Java标准的UUID,并提供了多种优化方法,以提高生成效率和兼容性。 ... [详细]
  • 在Python网络编程中,多线程技术的应用与优化是提升系统性能的关键。线程作为操作系统调度的基本单位,其主要功能是在进程内共享内存空间和资源,实现并行处理任务。当一个进程启动时,操作系统会为其分配内存空间,加载必要的资源和数据,并调度CPU进行执行。每个进程都拥有独立的地址空间,而线程则在此基础上进一步细化了任务的并行处理能力。通过合理设计和优化多线程程序,可以显著提高网络应用的响应速度和处理效率。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 如何在Linux系统中部署TensorFlow的详细指南
    本文详细介绍了在Linux系统中部署TensorFlow的过程。作者基于北京大学曹建教授的MOOC课程进行学习,但由于课程内容较旧,环境配置方面遇到了不少挑战。经过多次尝试,最终成功解决了这些问题,并总结了一套详细的安装指南,帮助初学者快速上手TensorFlow。 ... [详细]
  • 本文介绍了一种自定义的Android圆形进度条视图,支持在进度条上显示数字,并在圆心位置展示文字内容。通过自定义绘图和组件组合的方式实现,详细展示了自定义View的开发流程和关键技术点。示例代码和效果展示将在文章末尾提供。 ... [详细]
  • 本文全面解析了 Python 中字符串处理的常用操作与技巧。首先介绍了如何通过 `s.strip()`, `s.lstrip()` 和 `s.rstrip()` 方法去除字符串中的空格和特殊符号。接着,详细讲解了字符串复制的方法,包括使用 `sStr1 = sStr2` 进行简单的赋值复制。此外,还探讨了字符串连接、分割、替换等高级操作,并提供了丰富的示例代码,帮助读者深入理解和掌握这些实用技巧。 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 本文探讨了基于点集估算图像区域的Alpha形状算法在Python中的应用。通过改进传统的Delaunay三角剖分方法,该算法能够生成更加灵活和精确的形状轮廓,避免了单纯使用Delaunay三角剖分时可能出现的过大三角形问题。这种“模糊Delaunay三角剖分”技术不仅提高了形状的准确性,还增强了对复杂图像区域的适应能力。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有