热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

tensorflow学习(1.CNN简单实现MNIST)

先看代码#tf可以认为是全局变量,从该变量为类,从中取input_data变量importtensorflow.examples.tutorials

先看代码

#tf可以认为是全局变量,从该变量为类,从中取input_data变量
import tensorflow.examples.tutorials.mnist.input_data as input_data
import tensorflow as tf
#读取数据集
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
"""
#softmax方法进行训练
#这里是变量的占位符,一般是输入输出使用该部分
x=tf.placeholder(tf.float32,[None,784])
y_=tf.placeholder("float",[None,10])#定义参数变量
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,W)+b)#评价函数
cross_entropy=-tf.reduce_sum(y_*tf.log(y))
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)#启动模型,Session建立这样一个对象,然后指定某种操作,并实际进行该步
init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)#数据读取部分
for i in range(1000):batch_xs, batch_ys = mnist.train.next_batch(50)#run第一个参数是fetch,可以是tensor也可以是Operation,第二个feed_dict是替换tensor的值sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})print(batch_xs,batch_ys,i)correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))"""#这里用CNN方法进行训练
#函数定义部分
def weight_variable(shape):initial=tf.truncated_normal(shape,stddev=0.1)#随机权重赋值,不过truncated_normal代表如果是2倍标准差之外的结果重新选取该值return tf.Variable(initial)def bias_variable(shape):initial=tf.constant(0.1,shape=shape)#偏置项return tf.Variable(initial)def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#SAME表示输出补边,这里输出与输入尺寸一致def max_pool_2x2(x):return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#ksize代表池化范围的大小,stride为扫描步长# 这里是变量的占位符,一般是输入输出使用该部分
x=tf.placeholder(tf.float32,[None,784])
y_=tf.placeholder("float",[None,10])
x_image=tf.reshape(x,[-1,28,28,1])#-1表示自动计算该维度
#建立第一层
W_conv1=weight_variable([5,5,1,32])
b_conv1=bias_variable([32])
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)
#第二层
W_conv2=weight_variable([5,5,32,64])
b_conv2=bias_variable([64])
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)#第三层,而且这里是全连接层
W_fc1=weight_variable([7*7*64,1024])
b_fc1=bias_variable([1024])h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
#dropout,注意这里也是有一个输入参数的,和x以及y一样
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)# 评价函数
cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))# 启动模型,Session建立这样一个对象,然后指定某种操作,并实际进行该步
init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)#数据读取部分
for i in range(1000):batch_xs, batch_ys = mnist.train.next_batch(50)#这里貌似是代表读取50张图像数据#run第一个参数是fetch,可以是tensor也可以是Operation,第二个feed_dict是替换tensor的值'''if i % 10 == 0:train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5})print("step:%d,accuracy:%g" % (i, train_accuracy))'''sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5})#sess.run第一个参数是想要运行的位置,一般有train,accuracy,initdeng#第二个参数feed_dict,一般是输入参数,该代码里有x,y以及drop的参数if i%20==0 :print(i)print("train accuracy:%g"%sess.run(accuracy, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5}))
print("test accuracy:%g"%sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1}))

运行结果:

 

说明一下代码结构:

1.数据的读取(读取直接用MNIST,MNIST的数据结构x是一维的图像,size为(1,28*28),y是一维向量,size为(1,10),只要将数据的读取部分单独取出,就可以有比较清晰的代码了)

2.结构的建立(一般利用函数去定义池化等操作,这样能够有比较清晰的代码结构)

3.结构保存及测试(训练完数据后需要存储网络结构,该部分本文没有说明,正在学习)

本文作者也只是刚刚接触,针对实际项目会关注的一些问题,进行注释说明,如有错误,请指出说明

http://www.jeyzhang.com/tensorflow-learning-notes-2.html本链接的教程也比较清晰

 


推荐阅读
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 本文深入探讨了 Python 中的循环结构(包括 for 循环和 while 循环)、函数定义与调用,以及面向对象编程的基础概念。通过详细解释和代码示例,帮助读者更好地理解和应用这些核心编程元素。 ... [详细]
  • PHP 5.5.0rc1 发布:深入解析 Zend OPcache
    2013年5月9日,PHP官方发布了PHP 5.5.0rc1和PHP 5.4.15正式版,这两个版本均支持64位环境。本文将详细介绍Zend OPcache的功能及其在Windows环境下的配置与测试。 ... [详细]
  • 本文介绍了如何使用 Python 的 Bokeh 库在图表上绘制菱形标记。Bokeh 是一个强大的交互式数据可视化工具,支持丰富的图形自定义选项。 ... [详细]
author-avatar
爱中华爱美丽
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有