热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

t分布u分布卡方分布_几种分布概述(正态分布/卡方分布/F分布/T分布)

几种分布概述(正态分布卡方分布F分布T分布)搞清楚了下面的几种分布,在置信区间估计、显著性检验等问题中就会收到事半功倍的效果。comeon~!正态分布&

几种分布概述(正态分布/卡方分布/F分布/T分布)

搞清楚了下面的几种分布,在置信区间估计、显著性检验等问题中就会收到事半功倍的效果。come on~!

正态分布:正态分布(Normal distribution)又名高斯分布(Gaussiandistribution),若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

当μ=0,σ=1时,正态分布就成为标准正态分布N(0,1)。概率密度函数为:

2017-9-20 18:54:33 上传

下载附件 (25.56 KB)

正态分布的密度函数的特点是:关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,图像是一条位于x轴上方的钟形曲线。

卡方分布:若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布N(0,1)(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和

2017-9-20 18:54:33 上传

下载附件 (1.65 KB)

构成一新的随机变量,其分布规律称为

2017-9-20 18:54:36 上传

下载附件 (474 Bytes)

分布(chi-squaredistribution)。其中参数n称为自由度(通俗讲,样本中独立或能自由变化的自变量的个数,称为自由度),正如正态分布中均值或方差不同就是另一个正态分布一样,自由度不同就是另一个分布。记为

2017-9-20 18:54:36 上传

下载附件 (1.55 KB)

分布的均值为自由度 n,记为 E() = n;分布的方差为2倍的自由度(2n),记为 D() = 2n。

2017-9-20 18:57:34 上传

下载附件 (108.24 KB)

从分布图可以看出:分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 n 的增大;分布趋近于正态分布;随着自由度n的增大,分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。

t分布:首先要提一句u分布,正态分布(normal distribution)是许多统计方法的理论基础。正态分布的两个参数μ和σ决定了正态分布的位置和形态。为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布(standard normaldistribution),亦称u分布。根据中心极限定理,通过抽样模拟试验表明,在正态分布总体中以固定 n 抽取若干个样本时,样本均数的分布仍服从正态分布,即N(μ,σ)。所以,对样本均数的分布进行u变换,也可变换为标准正态分布N (0,1)

由于在实际工作中,往往σ(总体方差)是未知的,常用s(样本方差)作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。假设X服从标准正态分布N(0,1),Y服从(n)分布,那么Z=X/sqrt(Y/n)的分布称为自由度为n的t分布,记为 Z~t(n)。

2017-9-20 18:54:37 上传

下载附件 (32.2 KB)

可以看出,t分布以0为中心,左右对称的单峰分布;t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线。

F分布:设X、Y为两个独立的随机变量,X服从自由度为n的分布,Y服从自由度为m的分布,这两个独立的卡方分布除以各自的自由度以后的比率服从F分布。即:

2017-9-20 18:54:37 上传

下载附件 (83.59 KB)

F分布是一种非对称分布;它有两个自由度,即n-1和m-1,相应的分布记为F( n–1,m-1), n-1通常称为分子自由度, m-1通常称为分母自由度;F分布是一个以自由度(n-1)和(m-1)为参数的分布族,不同的自由度决定了F 分布的形状。



推荐阅读
  • 通过采用用户数据报协议(UDP),本研究设计并实现了一种高效的文件传输方法。在发送端,系统利用Java编程语言中的相关类库,如`File`和`FileInputStream`,实现了文件的读取与分段处理,确保了数据的快速传输。该方法不仅提高了传输效率,还降低了网络拥塞的风险,适用于大规模文件传输场景。 ... [详细]
  • Netty框架中运用Protobuf实现高效通信协议
    在Netty框架中,通过引入Protobuf来实现高效的通信协议。为了使用Protobuf,需要先准备好环境,包括下载并安装Protobuf的代码生成器`protoc`以及相应的源码包。具体资源可从官方下载页面获取,确保版本兼容性以充分发挥其性能优势。此外,配置好开发环境后,可以通过定义`.proto`文件来自动生成Java类,从而简化数据序列化和反序列化的操作,提高通信效率。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
  • 在MFC框架中,存在多个全局函数,用于在不同对象间获取信息或创建新对象。其中,`afxGetApp`函数尤为关键,它能够帮助开发者轻松获取当前应用程序的实例指针。本文将详细解析`afxGetApp`函数的内部机制及其在MFC应用程序中的具体应用场景,探讨其在提升代码可维护性和灵活性方面的优势。此外,还将介绍其他常用全局函数如`AfxWinInit()`和`AfxBeginThread()`的功能和使用方法,为开发者提供全面的参考。 ... [详细]
  • 针对NOJ1102黑白图像问题,本文采用深度优先搜索算法进行详细分析与实现。该问题要求在给定的时间限制(普通Java为1000-3000毫秒)和内存限制(65536KByte)内,处理一个n×n的黑白图像。通过对图像的逐像素遍历,利用深度优先搜索算法有效地识别并标记相连的黑色区域,从而实现图像的高效处理。实验结果显示,该方法在多种测试用例中均能稳定达到预期效果,具有较高的准确性和效率。 ... [详细]
  • 基址获取与驱动开发:内核中提取ntoskrnl模块的基地址方法解析
    基址获取与驱动开发:内核中提取ntoskrnl模块的基地址方法解析 ... [详细]
  • 在托管C++中开发应用程序时,遇到了如何声明和操作字符串数组的问题。本文详细探讨了字符串数组在托管C++中的应用与实现方法,包括声明、初始化、遍历和常见操作技巧,为开发者提供了实用的参考和指导。 ... [详细]
  • 字节码开发笔记:深入解析与应用技巧 ... [详细]
  • 在过去,我曾使用过自建MySQL服务器中的MyISAM和InnoDB存储引擎(也曾尝试过Memory引擎)。今年初,我开始转向阿里云的关系型数据库服务,并深入研究了其高效的压缩存储引擎TokuDB。TokuDB在数据压缩和处理大规模数据集方面表现出色,显著提升了存储效率和查询性能。通过实际应用,我发现TokuDB不仅能够有效减少存储成本,还能显著提高数据处理速度,特别适用于高并发和大数据量的场景。 ... [详细]
  • 在使用Keil C51创建51单片机项目时,启动代码中包含多个关键元素,这些元素确保了系统的正确初始化和运行。主要包括复位向量、中断向量表、系统时钟配置、寄存器初始化以及主函数入口等。这些组件共同协作,为后续的应用程序执行提供稳定的基础。 ... [详细]
  • Go 项目中数据库配置文件的优化与应用 ... [详细]
  • 深入解析Spring Boot启动过程中Netty异步架构的工作原理与应用
    深入解析Spring Boot启动过程中Netty异步架构的工作原理与应用 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 利用Java开发功能完备的电话簿应用程序,支持添加、查询与删除操作
    本研究基于Java语言开发了一款功能全面的电话簿应用程序,实现了与数据库的高效连接。该应用不仅支持添加、查询和删除联系人信息,还具备输出最大和最小ID号的功能,并能够对用户输入的ID号进行有效性验证,确保数据的准确性和完整性。详细实现方法可参阅相关文档。 ... [详细]
author-avatar
津pig
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有