热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

sparkui的访问地址_SparkWebUI详解

1.JobsUser:spark任务提交的用户,用以进行权限控制与资源分配。TotalUptime:sparkapplication总的运行时间,从ap

1.Jobs

User: spark任务提交的用户,用以进行权限控制与资源分配。

Total Uptime: spark application总的运行时间,从appmaster开始运行到结束的整体时间。

Scheduling Mode: application中task任务的调度策略,由参数spark.scheduler.mode来设置,可选的参数有FAIR和FIFO,默认是FIFO。这与yarn的资源调度策略的层级不同,yarn的资源调度是针对集群中不同application间的,而spark scheduler mode则是针对application内部task set级别的资源分配,不同FAIR策略的参数配置方式与yarn中FAIR策略的配置方式相同。

Completed Jobs: 已完成Job的基本信息,如想查看某一个Job的详细情况,可点击对应Job进行查看。

Active Jobs: 正在运行的Job的基本信息。

Event Timeline: 在application应用运行期间,Job和Exector的增加和删除事件进行图形化的展现。这个就是用来表示调度job何时启动何时结束,以及Excutor何时加入何时移除。我们可以很方便看到哪些job已经运行完成,使用了多少Excutor,哪些正在运行。

Job默认都是串行提交运行的,如果Job间没有依赖,可以使用多线程并行提交Job。

2.Jobs Detail

Staus: 展示Job的当前状态信息。

Active Stages: 正在运行的stages信息,点击某个stage可进入查看具体的stage信息。

Pending Stages: 排队的stages信息,根据解析的DAG图stage可并发提交运行,而有依赖的stage未运行完时则处于等待队列中。

Completed Stages: 已经完成的stages信息。

Event Timeline: 展示当前Job运行期间stage的提交与结束、Executor的加入与退出等事件信息。

DAG Visualization: 当前Job所包含的所有stage信息(stage中包含的明细的tranformation操作),以及各stage间的DAG依赖图。DAG也是一种调度模型,在spark的作业调度中,有很多作业存在依赖关系,所以没有依赖关系的作业可以并行执行,有依赖的作业不能并行执行。

3.Stages Detail

在Job Detail页点击进入某个stage后,可以查看某一stage的详细信息:

Total time across all tasks: 当前stage中所有task花费的时间和。

Locality Level Summary: 不同本地化级别下的任务数,本地化级别是指数据与计算间的关系(PROCESS_LOCAL进程本地化:task与计算的数据在同一个Executor中。NODE_LOCAL节点本地化:情况一:task要计算的数据是在同一个Worker的不同Executor进程中;情况二:task要计算的数据是在同一个Worker的磁盘上,或在 HDFS 上,恰好有 block 在同一个节点上。RACK_LOCAL机架本地化,数据在同一机架的不同节点上:情况一:task计算的数据在Worker2的Executor中;情况二:task计算的数据在Worker2的磁盘上。ANY跨机架,数据在非同一机架的网络上,速度最慢)。

Input Size/Records: 输入的数据字节数大小/记录条数。

Shuffle Write: 为下一个依赖的stage提供输入数据,shuffle过程中通过网络传输的数据字节数/记录条数。应该尽量减少shuffle的数据量及其操作次数,这是spark任务优化的一条基本原则。

DAG Visualization: 当前stage中包含的详细的tranformation操作流程图。

Metrics: 当前stage中所有task的一些指标(每一指标项鼠标移动上去后会有对应解释信息)统计信息。

Event Timeline: 清楚地展示在每个Executor上各个task的各个阶段的时间统计信息,可以清楚地看到task任务时间是否有明显倾斜,以及倾斜的时间主要是属于哪个阶段,从而有针对性的进行优化。

Aggregated Metrics by Executor: 将task运行的指标信息按excutor做聚合后的统计信息,并可查看某个Excutor上任务运行的日志信息。

Tasks: 当前stage中所有任务运行的明细信息,是与Event Timeline中的信息对应的文字展示(可以点击某个task查看具体的任务日志)。

stdout: 输出语句println()。

stderr: spark运行日志,spark默认使用log4j记录日志。

4.Storage

storage页面能看出application当前使用的缓存情况,可以看到有哪些RDD被缓存了,以及占用的内存资源。如果job在执行时持久化(persist)/缓存(cache)了一个RDD,那么RDD的信息可以在这个选项卡中查看。Storage Level展示数据集如何缓存,以及所缓存数据的副本数量。

5.Storage Detail

点击具体的RDDID,进入detail页。包括:

缓存RDD的概要信息。

在不同EXecutor上的分布(每个Executor上需要的内存)。

分块信息,如存储级别/位置/每个缓存RDD分块大小。

6.Enviroment

Environment选项卡提供有关Spark应用程序中使用的各种属性和环境变量的信息。

7.Executor

Executors选项卡提供了关于内存、CPU核和其他被Executors使用的资源的信息。这些信息在Executor级别和汇总级别都可以获取到。一方面通过它可以看出来每个excutor是否发生了数据倾斜,另一方面可以具体分析目前的应用是否产生了大量的shuffle,是否可以通过数据的本地性或者减小数据的传输来减少shuffle的数据量。

Summary: 该application运行过程中使用Executor的统计信息。

Executors: 每个Excutor的详细信息(包含driver),可以点击查看某个Executor中任务运行的详细日志。

8.SQL

SQL选项卡(只有执行了spark SQL查询才会有SQL选项卡)可以查看SQL执行计划的细节,它提供了SQL查询的DAG以及显示Spark如何优化已执行的SQL查询的查询计划。



推荐阅读
  • 在本地环境中部署了两个不同版本的 Flink 集群,分别为 1.9.1 和 1.9.2。近期在尝试启动 1.9.1 版本的 Flink 任务时,遇到了 TaskExecutor 启动失败的问题。尽管 TaskManager 日志显示正常,但任务仍无法成功启动。经过详细分析,发现该问题是由 Kafka 版本不兼容引起的。通过调整 Kafka 客户端配置并升级相关依赖,最终成功解决了这一故障。 ... [详细]
  • Java Socket 关键参数详解与优化建议
    Java Socket 的 API 虽然被广泛使用,但其关键参数的用途却鲜为人知。本文详细解析了 Java Socket 中的重要参数,如 backlog 参数,它用于控制服务器等待连接请求的队列长度。此外,还探讨了其他参数如 SO_TIMEOUT、SO_REUSEADDR 等的配置方法及其对性能的影响,并提供了优化建议,帮助开发者提升网络通信的稳定性和效率。 ... [详细]
  • Python多线程编程技巧与实战应用详解 ... [详细]
  • 利用树莓派畅享落网电台音乐体验
    最近重新拾起了闲置已久的树莓派,这台小巧的开发板已经沉寂了半年多。上个月闲暇时间较多,我决定将其重新启用。恰逢落网电台进行了改版,回忆起之前在树莓派论坛上看到有人用它来播放豆瓣音乐,便萌生了同样的想法。通过一番调试,终于实现了在树莓派上流畅播放落网电台音乐的功能,带来了全新的音乐享受体验。 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • 在使用 PHP 通过 SSL 安全连接到 MySQLi 数据库服务器时,遇到了一些技术难题。我的环境包括一个 Web 服务器和一个数据库服务器,两者均使用 OpenSSL 生成了证书。尽管证书内容一致,但在尝试从 Web 服务器使用 `mysql` 命令进行连接时,仍然遇到了问题。为了确保连接的安全性和稳定性,需要进一步检查证书配置和 PHP 的 SSL 设置,以排除潜在的配置错误或兼容性问题。 ... [详细]
  • Logstash安装配置
    阅读此文请先阅读上文:[大数据]-Elasticsearch5.3.1IK分词,同义词联想搜索设置,前面介绍了ES,Kiba ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • PyTorch实用技巧汇总(持续更新中)
    空洞卷积(Dilated Convolutions)在卷积操作中通过在卷积核元素之间插入空格来扩大感受野,这一过程由超参数 dilation rate 控制。这种技术在保持参数数量不变的情况下,能够有效地捕捉更大范围的上下文信息,适用于多种视觉任务,如图像分割和目标检测。本文将详细介绍空洞卷积的计算原理及其应用场景。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 本文探讨了如何利用Java代码获取当前本地操作系统中正在运行的进程列表及其详细信息。通过引入必要的包和类,开发者可以轻松地实现这一功能,为系统监控和管理提供有力支持。示例代码展示了具体实现方法,适用于需要了解系统进程状态的开发人员。 ... [详细]
  • 如何在服务器后台运行PHP脚本?
    如何在服务器后台运行PHP脚本? ... [详细]
  • 利用注解在Spring框架中实现面向切面编程(AOP)
    本文探讨了如何在Spring框架中通过注解实现面向切面编程(AOP)。具体介绍了使用`@Retention(RetentionPolicy.RUNTIME)`和`@Target({ElementType.TYPE, ElementType.METHOD})`等注解来定义切面,以及如何配置Spring AOP以实现对业务逻辑的增强和解耦。通过实例代码,详细展示了注解驱动的AOP在实际项目中的应用,为开发者提供了实用的参考。 ... [详细]
  • 【原创】《Linux设备驱动程序》学习之循序渐进---调试技术第四章---调试技术内核编程带有它自己的,独特的调试挑战性.内核代码无法轻易地在一个调试器下运行,也无法轻易的被跟踪,因为 ... [详细]
author-avatar
glh3112259
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有