作者:loring8 | 来源:互联网 | 2023-08-29 19:59
solr-架构
优点 主要功能包括全文检索、命中标示、分面搜索、动态聚类、数据库集成,以及富文本(如Word、PDF)的处理。Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。 Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。Solr强大的外部配置功能使得无需进行Java编码,便可对 其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制。 Solr有一个更大、更成熟的用户、开发和贡献者社区。 支持添加多种格式的索引,如:HTML、PDF、微软 Office 系列软件格式以及 JSON、XML、CSV 等纯文本格式。 Solr比较成熟、稳定。 不考虑建索引的同时进行搜索,速度更快。
不足 建立索引时,搜索效率下降,实时索引搜索效率不高。 (1) http 请求做了cache,有时候会出现新数据不可见,cache滞后的问题。—cache优化下也不是问题
(2) admin 后台页面,支持中文、复杂查询语法上,欠友好。—自己稍加扩展也不是问题
(3) swap core 的时候,单结点多core,并且core对应的索引比较大的时候,切换过程出现内存2倍化现象,甚至超时现象。—如果分前后排切换这些都不是问题了。
(4) index build和index search 往往在一起,导致全量过程,磁盘峰值3倍化。一份原来的、一份新建的、一份优化的时候。—-当然,build和search分离是可以解决这个问题的,也是常规做法。
(5) build 和search和在一起,也使得build 和search的一些参数设置不能区别对待,尤其是build和search合体的时候,预留磁盘、内存等加速build,反而影响search。—-当然可以 build search分离搞定
(6) 分布式查询,如果有merge,性能有些问题。—-当然可以将数据分区,避免merge
(7) 得分因子是可以调整的,但是得分因子的增加、得分公式的扩展,无法直接从solr配置插入。—-但是,可以扩展lucene的代码或者参数spanquery,重新一个query,插入solr,这样工作量稍大.另外,社区提供了bm25、pagerank等排序batch,对lucene有所以了解后,就可以直接引用了。
(8) solr 分布式索引全量、增量控制粒度,尚不够友好。指定结点、任何时刻全量,指定条件下增量都不够顺利。尽管solr提供了自定义扩展实现方法。这些也不是很大问题。
(9) solr build和search和在一起,数据和业务其实绑定在一起了,没有彻底隔离。使得在上100个core的时候,数据源管理维护变得非常消耗资源。直接引入hadoop或者其他nosql存储时目前最流行的用来隔离数据和业务耦合性了。开源的分布式lucene方案非常多.
(10) ABTest 共享相同索引目录,而不同排序或者不同分词 solr不能直接支持
(11) ABTest 独立索引目录,不同排序或者不同分词,solr也不能直接支持
(12) 一个core 对应多个子目录,查询既可以查指定子目录也可以全部子目录查,以及更新某个子目录索引或者全部子目录索引,solr也不能直接支持,而这些在大数据量的时候是需要支持这些功能的。
(13)solr或者lucene 目前不支持快速的“局部”更新。这里是指对document的某个字段的快速更新,目前是需要传入完整的document,然后add进去。如果document 的不变字段来源多个源的话,IO、计算资源有些浪费,如果更新量不大还好。—当然可以对更新的单独开辟内存来处理,而更大的那个基本索引不去动他。
(14)solr不支持第三方条件过滤。例如从倒排中过滤处理一批doc,而这些doc需要与外部源进行doc 域值过滤。问题主要是第三方信息动态性太强,不利于直接写索引中去。
(15)solr 在支持中文分词的时候,有很多第三方包可以引入,但需要扩展query parse有时候,总体看有优势也有劣势。优势是引入方便,劣势是词库、算法体系和lucene的不完全兼容,扩展、完善不是那么容易。
(16) 在排序上,对与去重或者对应基于时间动态性上,还没有现成的支持。去重是指排序的前几条结果,可能某个域值完全相同了,或者某几个域值完全相同,导致看起来,靠前的结果带有一些关联字段的“聚集性”,对有些应用来说,并不是最好的。 在时间因素上动态性,也没有直接支持,也只能靠间接的按时间排序来实现。 这个问题其实不是lucene、solr要关注的吧,应该是应用的特殊性导致的吧。
(17) solr 、lucene输出的日志,尚没有一个通用的分析工具,包括高频词、查询query聚合性等。只能自行去解析。
(18) 在支持推荐上,还不能将log信息直接关联起来,推荐也基本上靠离线计算好,导入倒排索引,查询再关联起来。
(19) 当内存30个G 以上,单节点索引数据量比较大的时候,jvm 环境下FGC和内存管理显得非常辣手。调优需要仔细的测试
(20) lucene很少面向接口,solr很多面向接口,插件化、可扩展使得solr很灵活
(21) 对于垂直型的平台化搜索,支持N个不同应用、不同schema、不同数据源、不同更新频率、不同查询逻辑、不同访问请求量、不同性能指标要求、不同机器配置、垂直扩容、水平扩容,solr显得不够胜任,尽管
solrcloud中已经有非常多的宝贵设计经验。
(22) 流控和数控,solr也不能直接支持。访问请求不支持定时和定量控制,索引垂直扩容(增加索引副本,支撑更多访问请求)、索引水平扩容(增加索引分区数,支撑更多数据量,平衡性能和空间压力)
(23) solr自容错还不够强大。例如schema 变更导致的不合理检测以及配置错误的回滚、solrconfig的一些参数不能动态获取,必须事先配置好。oom之后不能自动reload!请求量大的时候也不能抛弃一些请求。
(24) 基于位操作的高级应用还不够灵活,例如boolean 存储和facet、byte[] 存储和facet、group等,支撑仍然不够友好。
(25) query parse 基本没有预测功能,不能调整query顺序和自动收缩条件。当然一般情况下是不需要这么复杂的优化。
(26)一些比较变态的查询需求不是特别高效。例如查询某个域不空。当然可以将空域采取默认值代替,查询默认值再过滤。
(27)对于唯一值域,没有优化,导致唯一值域的term数据膨胀。最常见的就是更新时间、上传时间等,占了非常大的term比例
(28)multivalue 字段,实质是建立多个相同域名的字段,并不是一个域。对于域值很多内容的话,只好和在一起保存。同时,long int short float double 等数组不能直接作为一个类型保存,全部得转为字符存储。空间和效率有些低。
(29)有些词出现的频率特别高,导致该词的倒排连非常长,solr、lucene也没有干涉。任务交给应用自己斟酌,实际上solr单节点对于命中超过100w的,并多字段排序的时候,cache失效时性能非常糟糕的。
(30)solr\lucene 对于千万级别应用非常擅长,亿级别应用需要慎重对待。
请求处理
建立索引
参考站点: http://lxm3033.iteye.com/blog/1811286 http://www.cnblogs.com/renzherushe/p/4782396.html http://www.cnblogs.com/chowmin/articles/4629220.html