热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

sklearn读取html,sklearn数据库【老鱼学sklearn】(示例代码)

在做机器学习时需要有数据进行训练,幸好sklearn提供了很多已经标注好的数据集供我们进行训练。本节就来看看sklearn提供了哪些可供训练的数据集。房价数据from

在做机器学习时需要有数据进行训练,幸好sklearn提供了很多已经标注好的数据集供我们进行训练。

本节就来看看sklearn提供了哪些可供训练的数据集。

房价数据

from sklearn.datasets import load_boston

boston = load_boston()

print(boston.data.shape)

这个数据集的shape为:

(506, 13)

也就是506行,13列,这里13列就是影响房价的13个属性,具体是哪些属性可以通过如下代码打印出来:

print(boston.feature_names)

输出为:

[\'CRIM\' \'ZN\' \'INDUS\' \'CHAS\' \'NOX\' \'RM\' \'AGE\' \'DIS\' \'RAD\' \'TAX\' \'PTRATIO\'

\'B\' \'LSTAT\']

具体代表啥意思,要么自己猜,要么上网查吧,我不一一去解释了,我猜几个:RM:room数,也就是户型中的几房,AGE:age(房龄),不知道猜得对不对,大家自己去实践就是了。

你说我咋知道这个数据集中有feature_names属性,我也不知道,我只是把上面的boston整个打印出来看到其中有这个属性的。

预测房价案例

from sklearn.datasets import load_boston

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

# 加载房价数据

boston = load_boston()

data_X = boston.data

data_y = boston.target

# 拆分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.3)

# 创建线性回归模型

model = LinearRegression()

# 训练模型

model.fit(X_train, y_train)

# 打印出预测的前5条房价数据

print("预测的前5条房价数据:")

print(model.predict(X_test)[:5])

# 打印出测试集中实际房价前5条数据

print("测试集中实际房价前5条数据:")

print(y_test[:5])

输出:

预测的前5条房价数据:

[ 17.44807408 27.78251433 18.8344117 17.85437188 34.47632703]

测试集中实际房价前5条数据:

[ 14.3 22.3 22.6 20.6 34.9]

以这个结果集中第一条数据为例,我们预测出某房子的价格是17.4万,而实际价格是14.3万。

不过说实话,上面的房价数据只能用于测试算法,我们真要预测房价的话,原始数据的获得没有那么全和规整,因此,在机器学习中,收集数据并清洗也是一个很重要的工作,脏活累活也必须得干,光有算法没啥用。

花的数据前面一个博文已经讲过了,这里就不再重复了。

手写数字识别数据

创建样本数据

也可以生成一些虚拟的数据,这些是位于官网的API文档中Samples generator一节:

2a3e8c9580c046039e3ed39600c96df1.jpg

案例源代码为:

from sklearn.datasets import make_regression

import matplotlib.pyplot as plt

# 创建100个样本,1个属性值的数据,输出一个目标值,同时也设置了噪音

X, y = make_regression(n_samples=100, n_features=1, n_targets=1, noise=10)

print(X.shape)

print(y.shape)

# 对X,y画散点图,看看长啥模样的

plt.scatter(X, y)

plt.show()

输出的数据为:

(100, 1)

(100,)

也就是X值中有100行1列,y值是100行的值。

输出的图形为:

641c68ddffb84b0483d950595a86875d.jpg

看起来接近一条直线。



推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 前言--页数多了以后需要指定到某一页(只做了功能,样式没有细调)html ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • Java 类成员初始化顺序与数组创建
    本文探讨了Java中类成员的初始化顺序、静态引入、可变参数以及finalize方法的应用。通过具体的代码示例,详细解释了这些概念及其在实际编程中的使用。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 主要用了2个类来实现的,话不多说,直接看运行结果,然后在奉上源代码1.Index.javaimportjava.awt.Color;im ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
author-avatar
尕心疼TammyY
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有