题目大意:
一个长度为 n(1≤n≤200000) 的环由 0 or 1 组成,求有多少本质不同的环。
分析:
(这题有可能更侧重于考高精度)
考虑循环节的个数只可能为 n 的约数,且循环节的个数为 d 的置换会出现 φ(n/d) 次,所以答案就是:
Σ2dφ(n/d)n
(好大的公式...)
高精度压压位,优化一下常数就过了。
AC code:
#include
#define pb push_back
#define mp make_pair
#define clr(a, b) memset(a, b, sizeof a)
#define rep(i, a, b) for(int i = (a); i <= (b); ++i)
#define per(i, a, b) for(int i = (a); i >= (b); --i)
typedef long long LL;
typedef double DB;
typedef long double LD;
using namespace std;
void open_init()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
ios::sync_with_stdio(0);
}
void close_file()
{
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
}
const int MAXN = 200009;
const int MAX = 10009;
const int M = 1e8;
struct Bignum
{
LL a[MAX];
Bignum()
{
clr(a, 0);
a[0] = 1;
}
Bignum(int k)
{
clr(a, 0);
a[0] = 1;
if(k)
{
a[0] = 0;
while(k)
{
a[++a[0]] = k%M;
k /= M;
}
}
}
Bignum& operator = (const Bignum &b)
{
clr(a, 0);
memcpy(a, b.a, (b.a[0]+1)*sizeof(LL));
return *this;
}
inline void read()
{
char str[MAX] = "\0";
scanf("%s", str);
a[0] = strlen(str);
per(i, a[0], 1)
a[a[0]-i+1] = str[i-1]-‘0‘;
}
inline void adjust()
{
LL tmp;
rep(i, 1, a[0])
{
if(a[i] >= M)
{
tmp = a[i]/M;
a[i+1] += tmp, a[i] -= tmp*M;
}
if(a[i] <0)
{
tmp = (a[i]+1)/M+1;
a[i+1] -= tmp, a[i] += tmp*M;
}
}
while(a[a[0]+1]) a[0]++;
while(a[0] > 1 && !a[a[0]]) a[0]--;
}
inline void write()
{
printf("%d", (int)a[a[0]]);
per(i, a[0]-1, 1)
printf("%08d", (int)a[i]);
}
};
inline bool operator <(const Bignum &a, const Bignum &b)
{
if(a.a[0] != b.a[0]) return a.a[0] 0];
per(i, a.a[0], 1)
if(a.a[i] != b.a[i])
return a.a[i] return false;
}
inline bool operator == (const Bignum &a, const Bignum &b)
{
if(a.a[0] != b.a[0]) return false;
rep(i, 1, a.a[0])
if(a.a[i] != b.a[i])
return false;
return true;
}
inline bool operator > (const Bignum &a, const Bignum &b)
{
if(a.a[0] != b.a[0]) return a.a[0] > b.a[0];
per(i, a.a[0], 1)
if(a.a[i] != b.a[i])
return a.a[i] > b.a[i];
return false;
}
inline bool operator <= (const Bignum &a, const Bignum &b)
{
return !(a > b);
}
inline bool operator >= (const Bignum &a, const Bignum &b)
{
return !(a inline Bignum operator + (const Bignum &a, const Bignum &b)
{
Bignum ret;
int len = max(a.a[0], b.a[0]);
rep(i, 1, len)
ret.a[i] = a.a[i]+b.a[i];
ret.a[0] = len;
ret.adjust();
return ret;
}
inline void operator += (Bignum &a, const Bignum &b)
{
a = a+b;
}
inline Bignum operator - (const Bignum &a, const Bignum &b)
{
Bignum ret;
int len = a.a[0];
rep(i, 1, len)
ret.a[i] = a.a[i]-b.a[i];
ret.a[0] = len;
ret.adjust();
return ret;
}
inline void operator -= (Bignum &a, const Bignum &b)
{
a = a-b;
}
inline Bignum operator * (const Bignum &a, int k)
{
Bignum ret;
ret.a[0] = a.a[0];
rep(i, 1, a.a[0])
ret.a[i] = a.a[i]*k;
ret.adjust();
return ret;
}
inline Bignum operator * (const Bignum &a, const Bignum &b)
{
Bignum ret;
ret.a[0] = a.a[0]+b.a[0]-1;
rep(i, 1, a.a[0])
rep(j, 1, b.a[0])
ret.a[i+j-1] += a.a[i]*b.a[j];
ret.adjust();
return ret;
}
template<class T>
inline void operator *= (Bignum &a, const T &b)
{
a = a*b;
}
inline Bignum operator / (const Bignum &a, const Bignum &b)
{
Bignum ret, tmp;
ret.a[0] = a.a[0];
per(i, a.a[0], 1)
{
tmp = tmp*M+a.a[i];
int l = 0, r = M-1;
while(l int mid = (l+r+1)>>1;
if(b*mid > tmp) r = mid-1;
else l = mid;
}
tmp -= b*l;
ret.a[i] = l;
}
ret.adjust();
return ret;
}
inline void operator /= (Bignum &a, const Bignum &b)
{
a = a/b;
}
inline Bignum operator % (const Bignum &a, const Bignum &b)
{
return a-a/b*b;
}
inline void operator %= (Bignum &a, const Bignum &b)
{
a = a%b;
}
int n;
int phi[MAXN];
int prime[MAXN], tot;
bool is[MAXN];
vector<int> fac;
Bignum ans;
inline void euler(int n)
{
phi[1] = 1;
rep(i, 2, n)
{
if(!is[i])
{
prime[++tot] = i;
phi[i] = i-1;
}
for(int j = 1; j <= tot && (LL)prime[j]*i <= n; ++j)
{
is[i*prime[j]] = true;
if(i%prime[j] == 0)
{
phi[i*prime[j]] = phi[i]*prime[j];
break;
}
else phi[i*prime[j]] = phi[i]*phi[prime[j]];
}
}
}
inline void fac_decomp(int n)
{
rep(i, 1, n)
if(i*i > n) break;
else if(n%i == 0)
{
fac.pb(i);
if(i*i != n)
fac.pb(n/i);
}
}
template<class T>
T power(T a, int b)
{
T base(a), ret(1);
while(b)
{
if(b&1) ret *= base;
base *= base;
b >>= 1;
}
return ret;
}
int main()
{
open_init();
cin >> n;
euler(n);
fac_decomp(n);
rep(i, 0, fac.size()-1)
{
int d = fac[i], t = phi[n/d];
ans += power(Bignum(2), d)*t;
}
ans /= n;
ans.write();
close_file();
return 0;
}