热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

sgu294:He'sCircles(polya计数+高精度)

题目大意:      ~~~~~~一个长度为 n(1≤n≤200000) ~n(1\leqn\leq200000)~的环由 0 or 1 ~0~or~1~组成,求有多少本质不同的

题目大意:
      一个长度为 n(1n200000) 的环由 0 or 1 组成,求有多少本质不同的环。

分析:
      (这题有可能更侧重于考高精度)
      考虑循环节的个数只可能为 n 的约数,且循环节的个数为 d 的置换会出现 φ(n/d) 次,所以答案就是:

                            Σ2dφ(n/d)n 

      (好大的公式...)
      高精度压压位,优化一下常数就过了。

AC code:

#include 
#define pb push_back
#define mp make_pair
#define clr(a, b) memset(a, b, sizeof a)
#define rep(i, a, b) for(int i = (a); i <= (b); ++i)
#define per(i, a, b) for(int i = (a); i >= (b); --i)
typedef long long LL;
typedef double DB;
typedef long double LD;
using namespace std;

void open_init()
{
    #ifndef ONLINE_JUDGE
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    #endif
    ios::sync_with_stdio(0);
}

void close_file()
{
    #ifndef ONLINE_JUDGE
    fclose(stdin);
    fclose(stdout);
    #endif
}

const int MAXN = 200009;
const int MAX = 10009;
const int M = 1e8;

struct Bignum
{
    LL a[MAX];
    Bignum() 
    {
        clr(a, 0);
        a[0] = 1;
    }
    Bignum(int k)
    {
        clr(a, 0);
        a[0] = 1;
        if(k)
        {
            a[0] = 0;
            while(k)
            {
                a[++a[0]] = k%M;
                k /= M;
            }
        }
    }
    Bignum& operator = (const Bignum &b)
    {
        clr(a, 0);
        memcpy(a, b.a, (b.a[0]+1)*sizeof(LL));
        return *this;
    }
    inline void read()
    {
        char str[MAX] = "\0";
        scanf("%s", str);
        a[0] = strlen(str);
        per(i, a[0], 1)
            a[a[0]-i+1] = str[i-1]-‘0‘;
    }
    inline void adjust()
    {
        LL tmp;
        rep(i, 1, a[0])
        {
            if(a[i] >= M) 
            {
                tmp = a[i]/M;
                a[i+1] += tmp, a[i] -= tmp*M;
            }
            if(a[i] <0)
            {
                tmp = (a[i]+1)/M+1;
                a[i+1] -= tmp, a[i] += tmp*M; 
            }
        }
        while(a[a[0]+1]) a[0]++;
        while(a[0] > 1 && !a[a[0]]) a[0]--;
    }
    inline void write()
    {
        printf("%d", (int)a[a[0]]);
        per(i, a[0]-1, 1)
            printf("%08d", (int)a[i]);
    }
};

inline bool operator <(const Bignum &a, const Bignum &b)
{
    if(a.a[0] != b.a[0]) return a.a[0] 0];
    per(i, a.a[0], 1)
        if(a.a[i] != b.a[i])
            return a.a[i] return false;
}

inline bool operator == (const Bignum &a, const Bignum &b)
{
    if(a.a[0] != b.a[0]) return false;
    rep(i, 1, a.a[0])
        if(a.a[i] != b.a[i])
            return false;
    return true;
} 

inline bool operator > (const Bignum &a, const Bignum &b)
{
    if(a.a[0] != b.a[0]) return a.a[0] > b.a[0];
    per(i, a.a[0], 1)
        if(a.a[i] != b.a[i])
            return a.a[i] > b.a[i];
    return false;
}

inline bool operator <= (const Bignum &a, const Bignum &b)
{
    return !(a > b);
}

inline bool operator >= (const Bignum &a, const Bignum &b)
{
    return !(a inline Bignum operator + (const Bignum &a, const Bignum &b)
{
    Bignum ret;
    int len = max(a.a[0], b.a[0]);
    rep(i, 1, len)
        ret.a[i] = a.a[i]+b.a[i];
    ret.a[0] = len;
    ret.adjust();
    return ret;
}

inline void operator += (Bignum &a, const Bignum &b)
{
    a = a+b;
}

inline Bignum operator - (const Bignum &a, const Bignum &b)
{
    Bignum ret;
    int len = a.a[0];
    rep(i, 1, len)
        ret.a[i] = a.a[i]-b.a[i];
    ret.a[0] = len;
    ret.adjust();
    return ret;
}

inline void operator -= (Bignum &a, const Bignum &b)
{
    a = a-b;
}

inline Bignum operator * (const Bignum &a, int k)
{
    Bignum ret;
    ret.a[0] = a.a[0];
    rep(i, 1, a.a[0])
        ret.a[i] = a.a[i]*k;
    ret.adjust();
    return ret;
}

inline Bignum operator * (const Bignum &a, const Bignum &b)
{
    Bignum ret;
    ret.a[0] = a.a[0]+b.a[0]-1;
    rep(i, 1, a.a[0])
        rep(j, 1, b.a[0])
            ret.a[i+j-1] += a.a[i]*b.a[j];
    ret.adjust();
    return ret;
}

template<class T>
inline void operator *= (Bignum &a, const T &b)
{
    a = a*b;
}

inline Bignum operator / (const Bignum &a, const Bignum &b)
{
    Bignum ret, tmp;
    ret.a[0] = a.a[0];
    per(i, a.a[0], 1)
    {
        tmp = tmp*M+a.a[i];
        int l = 0, r = M-1;
        while(l int mid = (l+r+1)>>1;
            if(b*mid > tmp) r = mid-1;
            else l = mid;
        }
        tmp -= b*l;
        ret.a[i] = l;
    }
    ret.adjust();
    return ret;
}

inline void operator /= (Bignum &a, const Bignum &b)
{
    a = a/b;
}

inline Bignum operator % (const Bignum &a, const Bignum &b)
{
    return a-a/b*b;
}

inline void operator %= (Bignum &a, const Bignum &b)
{
    a = a%b;
}

int n;
int phi[MAXN];
int prime[MAXN], tot;
bool is[MAXN];
vector<int> fac;
Bignum ans;

inline void euler(int n)
{
    phi[1] = 1;
    rep(i, 2, n)
    {
        if(!is[i])
        {
            prime[++tot] = i;
            phi[i] = i-1;
        }
        for(int j = 1; j <= tot && (LL)prime[j]*i <= n; ++j)
        {
            is[i*prime[j]] = true;
            if(i%prime[j] == 0)
            {
                phi[i*prime[j]] = phi[i]*prime[j];
                break;
            }
            else phi[i*prime[j]] = phi[i]*phi[prime[j]];
        }
    }
}

inline void fac_decomp(int n)
{
    rep(i, 1, n)
        if(i*i > n) break;
        else if(n%i == 0) 
        {
            fac.pb(i);
            if(i*i != n)
                fac.pb(n/i);
        }
}

template<class T>   
T power(T a, int b)
{
    T base(a), ret(1);
    while(b)
    {
        if(b&1) ret *= base;
        base *= base;
        b >>= 1;
    }
    return ret;
}


int main()
{
    open_init();

    cin >> n;
    euler(n);
    fac_decomp(n);
    rep(i, 0, fac.size()-1)
    {
        int d = fac[i], t = phi[n/d];
        ans += power(Bignum(2), d)*t;
    }
    ans /= n;
    ans.write();

    close_file();
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

sgu294:He&#39;s Circles(polya计数+高精度)


推荐阅读
  • importjava.io.*;importjava.util.*;publicclass五子棋游戏{staticintm1;staticintn1;staticfinalintS ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 解决Visual Studio Code中PHP Intelephense误报问题
    PHP作为一种高度灵活的编程语言,其代码结构可能导致Intelephense插件在某些情况下报告不必要的错误或警告。自1.3.3版本起,Intelephense引入了多个配置选项,允许用户根据具体的工作环境和编程风格调整这些诊断信息的显示。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 本文详细介绍了C++中的构造函数,包括其定义、特点以及如何通过构造函数进行对象的初始化。此外,还探讨了转换构造函数的概念及其在不同情境下的应用,以及如何避免不必要的隐式类型转换。 ... [详细]
  • 嵌套列表的扁平化处理
    本文介绍了一种方法,用于遍历嵌套列表中的每个元素。如果元素是整数,则将其添加到结果数组中;如果元素是一个列表,则递归地遍历这个列表。此方法特别适用于处理复杂数据结构中的嵌套列表。 ... [详细]
  • 问题描述现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 本文详细介绍了iOS应用的生命周期,包括各个状态及其转换过程中的关键方法调用。 ... [详细]
  • 本文将从基础概念入手,详细探讨SpringMVC框架中DispatcherServlet如何通过HandlerMapping进行请求分发,以及其背后的源码实现细节。 ... [详细]
  • 在处理大数据量的SQL分页查询时,通常需要执行两次查询来分别获取数据和总记录数。本文介绍了一种优化方法,通过单次查询同时返回分页数据和总记录数,从而提高查询效率。 ... [详细]
  • 本文通过一个具体的实例,介绍如何利用TensorFlow框架来计算神经网络模型在多分类任务中的Top-K准确率。代码中包含了随机种子设置、模拟预测结果生成、真实标签生成以及准确率计算等步骤。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 本文详细介绍了JQuery Mobile框架中特有的事件和方法,帮助开发者更好地理解和应用这些特性,提升移动Web开发的效率。 ... [详细]
  • 数据类型--char一、char1.1char占用2个字节char取值范围:【0~65535】char采用unicode编码方式char类型的字面量用单引号括起来char可以存储一 ... [详细]
author-avatar
手机用户2502852637_666
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有