在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。
在Redis中,实现高可用的技术主要包括持久化、主从分离、哨兵和集群。
高可用策略 | 说明 |
---|---|
持久化 | 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。 |
主从复制 | 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化,写操作无法负载均衡,存储能力受到单机的限制。 |
哨兵 | 在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡,存储能力受到单机的限制。 |
集群 | 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。 |
Redis时内存数据库,数据都是储存在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式( 数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置(NFS)
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地
RDB持久化的触发分为手动触发和自动触发两种
注:在生产环境 bgsave 不允许轻易使用
save m n
#自动触发最常见的情况是在配置文件中通过 savemn,指定当 m 秒内发生 n 次变化时,会触发 bgsavevim /etc/redis/6379.conf
#219行,以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时, 如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化, 则执行bgsave
#254行,指定 RDB 文件名
dbfilename dump.rdb
#264行,指定 RDB 文件和 AOF 文件所在目录
dir /var/lib/redis/6379
#242行,是否开启 RDB 文件压缩
rdbcompression yes
其他自动触发机制除了 savemn 以外,还有一些其他情况会触发 bgsave:
Redis 服务器默认开启 RDB,关闭 AOF
要开启 AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
#700行修改, 开启AOF
appendonly yes
#704行,指定AOF文件名称
appendfilename "appendonly.aof"
#796行,是否忽略最后一条可能存在问题的指令
aof-load-truncated yes/etc/init.d/redis_6379 restart
#重启以使配置生效,开启 AOF
由于需要记录 Redis 的每条写命令,因此 AOF 不需要触发,下面介绍 AOF 的执行流程
AOF 的执行流程包括:
Redis 提供了多种 AOF 缓存区的同步文件策略
策略涉及到操作系统的 write 函数和 fsync 函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用 write 函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里
这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失
因此系统同时提供了 fsync、fdatasync 等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性
AOF 缓存区的同步文件策略存在三种同步方式
它们分别是:
vim /etc/redis/6379.conf
#729行
appendfsync always:
#命令写入 aof_ buf 后立即调用系统 fsync 操作同步到 AOF 文件,fsync 完成后线程返回
#这种情况下,每次有写命令都要同步到 AOF 文件,硬盘 IO 成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了 Redis 的性能
#即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低 SSD 的寿命appendfsync no:
#命令写入 aof_ buf 后调用系统 write 操作,不对 AOF 文件做 fsync 同步
#同步由操作系统负责,通常同步周期为 30 秒
#这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证appendfsynceverysec:
#命令写入 aof_ buf 后调用系统 write 操作,write 完成后线程返回
#fsync 同步文件操作由专门的线程每秒调用一次
#everysec 是前述两种策略的折中,是性能和数据安全性的平衡,因此是 Redis 的默认配置,也是我们推荐的配置
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度
文件重写的触发分为手动触发和自动触发
手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞
自动触发:通过设置auto-aof - rewrite-min-size选项和auto- aof - rewrite- percentage选项来自动执行BGREWRITEAOF
只有当auto-aof- rewrite- -min-size和auto-aof -rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作
vim /etc/redis/ 6379. conf
----729----
● auto-aof- rewrite-percentage 100
:当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
● auto-aof - rewrite-min-size 64mb
:当前A0F文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
关于文件重写的流程需要特别注意的两点
文件重写的流程:
Redis 父进程首先判断当前是否存在正在执行 bgsave/bgrewriteaof 的子进程,如果存在则 bgrewriteaof 命令直接返回,如果存在 bgsave 命令则等 bgsave 执行完成后再执行
父进程执行fork操作创建子进程,这个过程中父进程是阻塞的
父进程 fork 后,bgrewriteaof 命令返回"Background append only file rewrite started"信息并不再阻塞父进程,并可以响应其他命令;Redis 的所有写命令依然写入 AOF 缓冲区,并根据 appendfsync 策略同步到硬盘,保证原有 AOF 机制的正确
(由于 fork 操作使用写时复制技术,子进程只能共享 fork 操作时的内存数据;由于父进程依然在响应命令,因此 Redis 使用 AOF 重写缓冲区(aof_ rewrite_buf)保存这部分数据,防止新 AOF 文件生成期间丢失这部分数据;也就是说,bgrewriteaof 执行期间,Redis 的写命令同时追加到 aof_ buf 和 aof_ rewirte_ buf 两个缓冲区)
子进程根据内存快照,按照命令合并规则写入到新的 AOF 文件
子进程写完新的 AOF 文件后,向父进程发信号,父进程更新统计信息,具体可以通过 info persistence 查看
父进程把 AOF 重写缓冲区的数据写入到新的 AOF 文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致
使用新的 AOF 文件替换老文件,完成 AOF 重写
优点:
缺点:
优点:
缺点:
对于 AOF 持久化,向硬盘写数据的频率大大提高(everysec 策略下为秒级),IO 压力更大,甚至可能造成 AOF 追加阻塞问题
AOF 文件的重写与 RDB 的 bgsave 类似,会有 fork 时的阻塞和子进程的 IO 压力问题
相对来说,由于 AOF 向硬盘中写数据的频率更高,因此对 Redis 主进程性能的影响会更大
核心技术——》 setnx+分布式锁