热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

pytorch中的matmul与mm,bmm区别说明

这篇文章主要介绍了pytorch中的matmul与mm,bmm区别说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

pytorch中matmul和mm和bmm区别 matmulmmbmm结论

先看下官网上对这三个函数的介绍。

matmul

在这里插入图片描述

mm

在这里插入图片描述

bmm

顾名思义, 就是两个batch矩阵乘法.

在这里插入图片描述

结论

从官方文档可以看出

1、mm只能进行矩阵乘法,也就是输入的两个tensor维度只能是( n × m ) (n\times m)(n×m)和( m × p ) (m\times p)(m×p)

2、bmm是两个三维张量相乘, 两个输入tensor维度是( b × n × m ) (b\times n\times m)(b×n×m)和( b × m × p ) (b\times m\times p)(b×m×p), 第一维b代表batch size,输出为( b × n × p ) (b\times n \times p)(b×n×p)

3、matmul可以进行张量乘法, 输入可以是高维.

补充:torch中的几种乘法。torch.mm, torch.mul, torch.matmul

一、点乘

点乘都是broadcast的,可以用torch.mul(a, b)实现,也可以直接用*实现。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> torch.mul(a, b)
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])

当a, b维度不一致时,会自动填充到相同维度相点乘。

二、矩阵乘

矩阵相乘有torch.mm和torch.matmul两个函数。其中前一个是针对二维矩阵,后一个是高维。当torch.mm用于大于二维时将报错。

>>> a = torch.ones(3,4)
>>> b = torch.ones(4,2)
>>> torch.mm(a, b)
tensor([[4., 4.],
        [4., 4.],
        [4., 4.]])
>>> a = torch.ones(3,4)
>>> b = torch.ones(5,4,2)
>>> torch.matmul(a, b).shape
torch.Size([5, 3, 2])
>>> a = torch.ones(5,4,2)
>>> b = torch.ones(5,2,3)
>>> torch.matmul(a, b).shape
torch.Size([5, 4, 3])
>>> a = torch.ones(5,4,2)
>>> b = torch.ones(5,2,3)
>>> torch.matmul(b, a).shape
报错。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。


推荐阅读
  • Vision Transformer (ViT) 和 DETR 深度解析
    本文详细介绍了 Vision Transformer (ViT) 和 DETR 的工作原理,并提供了相关的代码实现和参考资料。通过观看教学视频和阅读博客,对 ViT 的全流程进行了详细的笔记整理,包括代码详解和关键概念的解释。 ... [详细]
  • PyTorch实用技巧汇总(持续更新中)
    空洞卷积(Dilated Convolutions)在卷积操作中通过在卷积核元素之间插入空格来扩大感受野,这一过程由超参数 dilation rate 控制。这种技术在保持参数数量不变的情况下,能够有效地捕捉更大范围的上下文信息,适用于多种视觉任务,如图像分割和目标检测。本文将详细介绍空洞卷积的计算原理及其应用场景。 ... [详细]
  • PyTorch 使用问题:解决导入 torch 后 torch.cuda.is_available() 返回 False 的方法
    在配置 PyTorch 时,遇到 `torch.cuda.is_available()` 返回 `False` 的问题。本文总结了多种解决方案,并分享了个人在 PyCharm、Python 和 Anaconda3 环境下成功配置 CUDA 的经验,以帮助读者避免常见错误并顺利使用 GPU 加速。 ... [详细]
  • 本文深入解析了PyTorch框架中的`Parameter()`类和`register_parameter()`方法。首先,通过官方文档介绍了`Parameter()`类的基本功能及其在模型参数管理中的作用。接着,详细探讨了`register_parameter()`方法如何将自定义参数添加到模型中,并确保这些参数能够被优化器识别和更新。最后,对比分析了两者的主要差异,帮助读者理解在不同场景下选择合适的方法来管理和优化模型参数。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
  • 本文提供了PyTorch框架中常用的预训练模型的下载链接及详细使用指南,涵盖ResNet、Inception、DenseNet、AlexNet、VGGNet等六大分类模型。每种模型的预训练参数均经过精心调优,适用于多种计算机视觉任务。文章不仅介绍了模型的下载方式,还详细说明了如何在实际项目中高效地加载和使用这些模型,为开发者提供全面的技术支持。 ... [详细]
  • 利用 PyTorch 实现 Python 中的高效矩阵运算 ... [详细]
  • 本文介绍了一款高效的开源OCR文本识别模型,结合了TextBoxes++和RetinaNet的优势。该模型在文本检测方面表现出色,适用于多种场景。项目代码已托管至GitHub,方便研究人员和开发者使用和改进。 ... [详细]
  • 在上一节中,我们完成了网络的前向传播实现。本节将重点探讨如何为检测输出设定目标置信度阈值,并应用非极大值抑制技术以提高检测精度。为了更好地理解和实践这些内容,建议读者已经完成本系列教程的前三部分,并具备一定的PyTorch基础知识。此外,我们将详细介绍这些技术的原理及其在实际应用中的重要性,帮助读者深入理解目标检测算法的核心机制。 ... [详细]
  • 在 PyTorch 中,`pin_memory` 技术用于锁定页面内存。当在创建 `DataLoader` 时将 `pin_memory` 参数设置为 `True`,这意味着生成的 Tensor 数据最初会被存储在锁定的内存中。这一技术能够显著提高数据从 CPU 到 GPU 的传输效率,从而加快训练速度。通过合理利用 `pin_memory`,可以有效减少数据加载的瓶颈,提升整体性能。 ... [详细]
  • 谷歌工程师:TensorFlow已重获新生;网友:我还是用PyTorch
    乾明发自凹非寺量子位报道|公众号QbitAI道友留步!TensorFlow已重获新生。在“PyTorch真香”的潮流中,有人站出来为TensorFlow说话了。这次来自谷歌的工程师 ... [详细]
  • 1.如何进行迁移 使用Pytorch写的模型: 对模型和相应的数据使用.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。 ... [详细]
  • 5.Numpy 索引(一维索引/二维索引)
    本文内容是根据莫烦Python网站的视频整理的笔记,笔记中对代码的注释更加清晰明了,同时根据所有笔记还整理了精简版的思维导图,可在此专栏查看,想观看视频可直接去他的网 ... [详细]
  • python教程分享Pytorchmlu 实现添加逐层算子方法详解
    目录1、注册算子2、算子分发3、修改opmethods基类4、下发算子5、添加wrapper6、添加wrapper7、算子测试本教程分享了在寒武纪设备上pytorch-mlu中添加 ... [详细]
author-avatar
宾利Bentley乀Motors
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有