热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python烟火检测pytorch抽烟检测EfficientNet

python烟火检测pytorch火焰抽烟正常检测EfficientNet#!/usr/bin/python3#-*-coding:utf-8-*-

python烟火检测pytorch火焰抽烟正常检测EfficientNet

#!/usr/bin/python3
# -*- coding: utf-8 -*-
'''
'''
import json
from PIL import Image, ImageDraw, ImageFont
import torch
from torch import nn
from torchvision import transforms
from efficientnet_pytorch import FireSmokeEfficientNet
import collections
image_dir = './tests/5.jpg'
model_para = collections.OrderedDict()
model = FireSmokeEfficientNet.from_arch('efficientnet-b0')
# out_channels = model._fc.in_features
model._fc = nn.Linear(1280, 3)
print(model)
modelpara = torch.load('./checkpoint.pth.tar',map_location='cpu')
# print(modelpara['state_dict'].keys())
for key in modelpara['state_dict'].keys():
# print(key[7:])
# newkey = model_para[key.split('.',2)[-1]]
# print(newkey)
model_para[key[7:]] =modelpara['state_dict'][key]
# print(model_para.keys())
# 训练模型转换
model.load_state_dict(model_para)
# Preprocess image
tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])
image = Image.open(image_dir)
img = tfms(image).unsqueeze(0)
print(img.shape) # torch.Size([1, 3, 224, 224])
# Load ImageNet class names
labels_map = json.load(open('examples/simple/fire_smoke_map.txt'))
labels_map = [labels_map[str(i)] for i in range(3)]
# Classify
model.eval()
with torch.no_grad():
outputs = model(img)
draw = ImageDraw.Draw(image)
fOnt= ImageFont.truetype('simkai.ttf', 30)
# Print predictions
print('-----')
cout = 0
for idx in torch.topk(outputs, k=2).indices.squeeze(0).tolist():
cout += 1
prob = torch.softmax(outputs, dim=1)[0, idx].item()
print('{label:<75} ({p:.2f}%)'.format(label=labels_map[idx], p=prob*100))
position = (10, 30*cout - 20)
text = '{label:<5} :{p:.2f}%'.format(label=labels_map[idx], p=prob*100)
draw.text(position, text, fOnt=font, fill="#ff0000", spacing=0, align='left')
image.save('results/result_{}'.format(image_dir.split('/')[-1]))

 

 python烟火检测pytorch抽烟检测EfficientNet_哔哩哔哩_bilibili

https://download.csdn.net/download/babyai996/85094931


推荐阅读
  • Python 异步编程:ASGI 服务器与框架详解
    自 Python 3.5 引入 async/await 语法以来,异步编程迅速崛起,吸引了大量开发者的关注。本文将深入探讨 ASGI(异步服务器网关接口)及其在现代 Python Web 开发中的应用,介绍主流的 ASGI 服务器和框架。 ... [详细]
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 对象自省自省在计算机编程领域里,是指在运行时判断一个对象的类型和能力。dir能够返回一个列表,列举了一个对象所拥有的属性和方法。my_list[ ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 本文探讨了如何在Python中处理长数据的完全显示问题,包括numpy数组、pandas DataFrame以及tensor类型的完整输出设置。 ... [详细]
  • 本文介绍了一种方法,通过使用Python的ctypes库来调用C++代码。具体实例为实现一个简单的加法器,并详细说明了从编写C++代码到编译及最终在Python中调用的全过程。 ... [详细]
  • 本文介绍如何使用 Python 的 xlrd 库读取 Excel 文件,并将其数据处理后存储到数据库中。通过实际案例,详细讲解了文件路径、合并单元格处理等常见问题。 ... [详细]
  • 开发笔记:9.八大排序
    开发笔记:9.八大排序 ... [详细]
  • 本文介绍如何使用 Python 的 Pandas 库中 Series 对象的 round() 方法,对数值进行四舍五入处理。该方法在数据预处理和分析中非常有用。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 本文详细介绍了如何在Python和PyTorch环境中实现Tensor与NumPy数组之间的转换,以及PIL图像对象与NumPy数组之间的相互转换。内容包括具体的转换函数及其使用示例。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 精选10款Python框架助力并行与分布式机器学习
    随着神经网络模型的不断深化和复杂化,训练这些模型变得愈发具有挑战性,不仅需要处理大量的权重,还必须克服内存限制等问题。本文将介绍10款优秀的Python框架,帮助开发者高效地实现分布式和并行化的深度学习模型训练。 ... [详细]
author-avatar
一米静心的阳光
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有