热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python协程的前世今生的简单介绍

本文目录一览:1、python异步协程跟多进程多线程哪个效率高?

本文目录一览:


  • 1、python异步协程跟多进程多线程哪个效率高?


  • 2、协程与异步IO


  • 3、python为什么引入协程


  • 4、python协程(4):asyncio


  • 5、python协程为什么不需要枷锁


  • 6、简述python进程,线程和协程的区别及应用场景

python异步协程跟多进程多线程哪个效率高?

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。

一个程序的执行实例就是一个进程。每一个进程提供执行程序所需的所有资源。

PS:上面都是摘抄自网页链接这里的,具体的可以看看这里,你的答案在图片的最后一点。因为线程和进程是不能层面的定义,一个进程可以包括多个线程,所以没有可比性~

协程与异步IO

协程,又称微线程,纤程。英文名 Coroutine 。Python对协程的支持是通过 generator 实现的。在generator中,我们不但可以通过for循环来迭代,还可以不断调用 next()函数 获取由 yield 语句返回的下一个值。但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。yield其实是终端当前的函数,返回给调用方。python3中使用yield来实现range,节省内存,提高性能,懒加载的模式。

asyncio是Python 3.4 版本引入的 标准库 ,直接内置了对异步IO的支持。

从Python 3.5 开始引入了新的语法 async 和 await ,用来简化yield的语法:

import asyncio

import threading

async def compute(x, y):

    print("Compute %s + %s ..." % (x, y))

    print(threading.current_thread().name)

    await asyncio.sleep(x + y)

    return x + y

async def print_sum(x, y):

    result = await compute(x, y)

    print("%s + %s = %s" % (x, y, result))

    print(threading.current_thread().name)

if __name__ == "__main__":

    loop = asyncio.get_event_loop()

    tasks = [print_sum(1, 2), print_sum(3, 4)]

    loop.run_until_complete(asyncio.wait(tasks))

    loop.close()

线程是内核进行抢占式的调度的,这样就确保了每个线程都有执行的机会。而 coroutine 运行在同一个线程中,由语言的运行时中的 EventLoop(事件循环) 来进行调度。和大多数语言一样,在 Python 中,协程的调度是非抢占式的,也就是说一个协程必须主动让出执行机会,其他协程才有机会运行。

让出执行的关键字就是 await。也就是说一个协程如果阻塞了,持续不让出 CPU,那么整个线程就卡住了,没有任何并发。

PS: 作为服务端,event loop最核心的就是IO多路复用技术,所有来自客户端的请求都由IO多路复用函数来处理;作为客户端,event loop的核心在于利用Future对象延迟执行,并使用send函数激发协程,挂起,等待服务端处理完成返回后再调用CallBack函数继续下面的流程

Go语言的协程是 语言本身特性 ,erlang和golang都是采用了CSP(Communicating Sequential Processes)模式(Python中的协程是eventloop模型),但是erlang是基于进程的消息通信,go是基于goroutine和channel的通信。

Python和Go都引入了消息调度系统模型,来避免锁的影响和进程/线程开销大的问题。

协程从本质上来说是一种用户态的线程,不需要系统来执行抢占式调度,而是在语言层面实现线程的调度 。因为协程 不再使用共享内存/数据 ,而是使用 通信 来共享内存/锁,因为在一个超级大系统里具有无数的锁,共享变量等等会使得整个系统变得无比的臃肿,而通过消息机制来交流,可以使得每个并发的单元都成为一个独立的个体,拥有自己的变量,单元之间变量并不共享,对于单元的输入输出只有消息。开发者只需要关心在一个并发单元的输入与输出的影响,而不需要再考虑类似于修改共享内存/数据对其它程序的影响。

python为什么引入协程

python的多线程是伪的,因为python有GIL(全局解释器锁,这个你不知道可以自己 百度),同一个cpu只能同时执行一个任务,多线程同一时刻只有拿到GIL的线程在执行。而协程也是并发执行多个任务,但是是在程序员的控制下按序执行,比起线程,协程可控性要强,效率跟线程差不多,所以引入了协程来替代大多数情况下的线程。

python协程(4):asyncio

asyncio是官方提供的协程的类库,从python3.4开始支持该模块

async awiat是python3.5中引入的关键字,使用async关键字可以将一个函数定义为协程函数,使用awiat关键字可以在遇到IO的时候挂起当前协程(也就是任务),去执行其他协程。

await + 可等待的对象(协程对象、Future对象、Task对象 - IO等待)

注意:在python3.4中是通过asyncio装饰器定义协程,在python3.8中已经移除了asyncio装饰器。

事件循环,可以把他当做是一个while循环,这个while循环在周期性的运行并执行一些协程(任务),在特定条件下终止循环。

loop = asyncio.get_event_loop():生成一个事件循环

loop.run_until_complete(任务):将任务放到事件循环

Tasks用于并发调度协程,通过asyncio.create_task(协程对象)的方式创建Task对象,这样可以让协程加入事件循环中等待被调度执行。除了使用 asyncio.create_task() 函数以外,还可以用低层级的 loop.create_task() 或 ensure_future() 函数。不建议手动实例化 Task 对象。

本质上是将协程对象封装成task对象,并将协程立即加入事件循环,同时追踪协程的状态。

注意:asyncio.create_task() 函数在 Python 3.7 中被加入。在 Python 3.7 之前,可以改用 asyncio.ensure_future() 函数。

下面结合async awiat、事件循环和Task看一个示例

示例一:

*注意:python 3.7以后增加了asyncio.run(协程对象),效果等同于loop = asyncio.get_event_loop(),loop.run_until_complete(协程对象) *

示例二:

注意:asyncio.wait 源码内部会对列表中的每个协程执行ensure_future从而封装为Task对象,所以在和wait配合使用时task_list的值为[func(),func()] 也是可以的。

示例三:

python协程为什么不需要枷锁

Python是一门动态的脚本语言,它有一个锁叫做全局解释器锁,它这个锁是加在cpython解释器上的,我们说的Python多线程,再线程切换的时候加了锁,用了控制同步。所以多线程不是真正意义的并发,而协程是在线程里面的,线程并没有锁,一个线程可以有多个协程,协程又叫微线程,它的切换完全由自己创建,它有几种实现方式,一种是yield和send,一种是gevent,一种是greenlet,线程的并发不好,协程可以有上万次并发。回到之前的问题,因为协程在线程内,而线程本身没有锁,所以携程没有锁。

简述python进程,线程和协程的区别及应用场景

协程多与线程进行比较

1) 一个线程可以多个协程,一个进程也可以单独拥有多个协程,这样python中则能使用多核CPU。

2) 线程进程都是同步机制,而协程则是异步

3) 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态


推荐阅读
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • Python全局解释器锁(GIL)机制详解
    在Python中,线程是操作系统级别的原生线程。为了确保多线程环境下的内存安全,Python虚拟机引入了全局解释器锁(Global Interpreter Lock,简称GIL)。GIL是一种互斥锁,用于保护对解释器状态的访问,防止多个线程同时执行字节码。尽管GIL有助于简化内存管理,但它也限制了多核处理器上多线程程序的并行性能。本文将深入探讨GIL的工作原理及其对Python多线程编程的影响。 ... [详细]
  • 如何利用Java 5 Executor框架高效构建和管理线程池
    Java 5 引入了 Executor 框架,为开发人员提供了一种高效管理和构建线程池的方法。该框架通过将任务提交与任务执行分离,简化了多线程编程的复杂性。利用 Executor 框架,开发人员可以更灵活地控制线程的创建、分配和管理,从而提高服务器端应用的性能和响应能力。此外,该框架还提供了多种线程池实现,如固定线程池、缓存线程池和单线程池,以适应不同的应用场景和需求。 ... [详细]
  • 设计实战 | 10个Kotlin项目深度解析:首页模块开发详解
    设计实战 | 10个Kotlin项目深度解析:首页模块开发详解 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • C++ 异步编程中获取线程执行结果的方法与技巧及其在前端开发中的应用探讨
    本文探讨了C++异步编程中获取线程执行结果的方法与技巧,并深入分析了这些技术在前端开发中的应用。通过对比不同的异步编程模型,本文详细介绍了如何高效地处理多线程任务,确保程序的稳定性和性能。同时,文章还结合实际案例,展示了这些方法在前端异步编程中的具体实现和优化策略。 ... [详细]
  • 在使用 Qt 进行 YUV420 图像渲染时,由于 Qt 本身不支持直接绘制 YUV 数据,因此需要借助 QOpenGLWidget 和 OpenGL 技术来实现。通过继承 QOpenGLWidget 类并重写其绘图方法,可以利用 GPU 的高效渲染能力,实现高质量的 YUV420 图像显示。此外,这种方法还能显著提高图像处理的性能和流畅性。 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
  • 本文探讨了如何利用 jQuery 的 JSONP 技术实现跨域调用外部 Web 服务。通过详细解析 JSONP 的工作原理及其在 jQuery 中的应用,本文提供了实用的代码示例和最佳实践,帮助开发者解决跨域请求中的常见问题。 ... [详细]
  • 尽管我们尽最大努力,任何软件开发过程中都难免会出现缺陷。为了更有效地提升对支持部门的协助与支撑,本文探讨了多种策略和最佳实践,旨在通过改进沟通、增强培训和支持流程来减少这些缺陷的影响,并提高整体服务质量和客户满意度。 ... [详细]
  • 在前文探讨了Spring如何为特定的bean选择合适的通知器后,本文将进一步深入分析Spring AOP框架中代理对象的生成机制。具体而言,我们将详细解析如何通过代理技术将通知器(Advisor)中包含的通知(Advice)应用到目标bean上,以实现切面编程的核心功能。 ... [详细]
  • 深入解析 Vue 中的 Axios 请求库
    本文深入探讨了 Vue 中的 Axios 请求库,详细解析了其核心功能与使用方法。Axios 是一个基于 Promise 的 HTTP 客户端,支持浏览器和 Node.js 环境。文章首先介绍了 Axios 的基本概念,随后通过具体示例展示了如何在 Vue 项目中集成和使用 Axios 进行数据请求。无论你是初学者还是有经验的开发者,本文都能为你解决 Vue.js 相关问题提供有价值的参考。 ... [详细]
  • 在Python编程中,探讨了并发与并行的概念及其区别。并发指的是系统同时处理多个任务的能力,而并行则指在同一时间点上并行执行多个任务。文章详细解析了阻塞与非阻塞操作、同步与异步编程模型,以及IO多路复用技术的应用。通过模拟socket发送HTTP请求的过程,展示了如何创建连接、发送数据和接收响应,并强调了默认情况下socket的阻塞特性。此外,还介绍了如何利用这些技术优化网络通信性能和提高程序效率。 ... [详细]
  • 在软件开发领域,“池”技术被广泛应用,如数据库连接池、线程池等。本文重点探讨Java中的线程池ThreadPoolExecutor,通过详细解析其内部机制,帮助开发者理解如何高效利用线程池管理任务执行。线程池不仅能够显著减少系统资源的消耗,提高响应速度,还能通过合理的配置,如饱和策略,确保在高负载情况下系统的稳定性和可靠性。文章还将结合实际案例,展示线程池在不同应用场景下的具体实现与优化技巧。 ... [详细]
  • 本文提供了 RabbitMQ 3.7 的快速上手指南,详细介绍了环境搭建、生产者和消费者的配置与使用。通过官方教程的指引,读者可以轻松完成初步测试和实践,快速掌握 RabbitMQ 的核心功能和基本操作。 ... [详细]
author-avatar
mobiledu2502881853
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有