热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python如何将行列互换(python数组行列互换)

本文目录一览:1、如何用python实现行列互换,大家怎么看待呢?

本文目录一览:


  • 1、如何用python实现行列互换,大家怎么看待呢?


  • 2、python行转换成列怎么实现?


  • 3、如何用python实现行列互换?


  • 4、用python怎么实现多个excel自动两列位置对调?


  • 5、如何用python实现行列互换

如何用python实现行列互换,大家怎么看待呢?

你需要确保该数组的行列数都是相同的。列表递推式提供了一个简便的矩阵转置的方法:另一个更快和高级一些的方法。可以使用zip函数:本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦。有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别。 Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速。在列表递推式版本中,内层递推式表示选则什么(行),外层递推式表示选择者(列)。这个过程完成后就实现了转置。在zip版本中,我们使用arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果。然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵)。因为我们没有直接将zip的结果表示为list,所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表)。但是,在特定的情况下,上面的方法对效率的微弱提升不能弥补对复杂度的增加。关于args和kwds语法:args(实际上,号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定,并保留所有的位置信息, 而不是具体的变量。当你使用这个方法传递参数时,变量可以是任意的可迭代对象(其实可以是任何表达式,只要返回值是迭代器)。

python行转换成列怎么实现?

可以使用Python字符串内置的替换方法把分隔符“,”替换成‘\r\n’ 换行符即可(Linux、MacOS下换行符为:"\n"):

Python代码实现

iPython下演示

如何用python实现行列互换?

题主既然问出行列转换这样的问题,那就说明题主的Python功力远远不到家的。行列互换其实在Python中很快捷的就可以实现了。

首先,让我们来建立一个矩阵,这里我们使用numpy包下的random包来生成3×3的矩阵。大概的代码如下所示:

import numpy as np

a=np.random.random((3,3))

这样,我们就可以生成一个随机数组成的3×3矩阵。之后我们就可以将这个矩阵进行行列互换了。具体代码也非常的简单,具体如下所示:

b=a.T

如上所示,只需要对a对象进行T操作,就可将我们的数据进行行列转换了。

所以,题主在学习的时候,一定要学会用简单的方法去解决复杂的问题。而不要将自己的问题复杂化,就如同楼上某位同学写的代码那样,明显太复杂了。本来三行代码能够实现的功能,搞得如此纠结。

另外,如果题主想进入数据分析行业,我推荐一本Python的相关书籍给你,这本书可以让你掌握一些常见的数据整理、数据清洗操作。这本书的名字是《利用Python进行数据分析》,该书作者是高效数据分析包Pandas的开发者,对数据分析基本技能的提升作用显著。

如果有什么想与我交流的,欢迎在本题下进行评论。

用python怎么实现多个excel自动两列位置对调?

import pandas as pd

import os

# 指定一个 Excel 文件夹目录

path = 'E:/下载/文件夹的名称/'

# 遍历文件夹获取所有符合条件的 Excel 文件完整目录

for root, dirs, files in os.walk(path):

# 遍历文件

for file in files:

# 如果有不需要操作的文件另外添加判断条件即可

# 拼接完整目录

filePath = path + file

# 读取数据

df = pd.read_excel(filePath)

# 所有列名

columnName = df.columns.values

# B C 互换位置

columnName[1], columnName[2] = columnName[2], columnName[1]

# 重组 DataFrame

new = df.loc[:, columnName]

# 到这一步已经实现了你的需求,如果另存为

dataFrame = pd.DataFrame(new)

# 覆盖保存,要另存为 filePath 改成 path + file.split('.')[0] + '1.' + file.split('.')[1]

dataFrame.to_excel(filePath, index=False)

如何用python实现行列互换

用excel的话建议用pandas

import pandas as pd

df = pd.read_excel('你的文件路径','第几个sheet', header = False) #读取文件 比如 df = pd.read_excel('C:/your_data.xlsx',0, header = False)

df_T = df.T #获得矩阵的转置

df_T.to_excel('要保存的文件路径', sheet_name='我的表名') #保存文件 比如 df_T.to_excel('C:/test.xlsx', sheet_name='sheet 1')

保存的文件之前的title都还在,WinPython直接解压就可以使用,里面要使用的包都有


推荐阅读
  • 利用 Python Socket 实现 ICMP 协议下的网络通信
    在计算机网络课程的2.1实验中,学生需要通过Python Socket编程实现一种基于ICMP协议的网络通信功能。与操作系统自带的Ping命令类似,该实验要求学生开发一个简化的、非标准的ICMP通信程序,以加深对ICMP协议及其在网络通信中的应用的理解。通过这一实验,学生将掌握如何使用Python Socket库来构建和解析ICMP数据包,并实现基本的网络探测功能。 ... [详细]
  • 大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式
    大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式 ... [详细]
  • 技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统
    技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统 ... [详细]
  • 如何将Python与Excel高效结合:常用操作技巧解析
    本文深入探讨了如何将Python与Excel高效结合,涵盖了一系列实用的操作技巧。文章内容详尽,步骤清晰,注重细节处理,旨在帮助读者掌握Python与Excel之间的无缝对接方法,提升数据处理效率。 ... [详细]
  • Python 序列图分割与可视化编程入门教程
    本文介绍了如何使用 Python 进行序列图的快速分割与可视化。通过一个实际案例,详细展示了从需求分析到代码实现的全过程。具体包括如何读取序列图数据、应用分割算法以及利用可视化库生成直观的图表,帮助非编程背景的用户也能轻松上手。 ... [详细]
  • 本文全面解析了 Python 中字符串处理的常用操作与技巧。首先介绍了如何通过 `s.strip()`, `s.lstrip()` 和 `s.rstrip()` 方法去除字符串中的空格和特殊符号。接着,详细讲解了字符串复制的方法,包括使用 `sStr1 = sStr2` 进行简单的赋值复制。此外,还探讨了字符串连接、分割、替换等高级操作,并提供了丰富的示例代码,帮助读者深入理解和掌握这些实用技巧。 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • Python 伦理黑客技术:深入探讨后门攻击(第三部分)
    在《Python 伦理黑客技术:深入探讨后门攻击(第三部分)》中,作者详细分析了后门攻击中的Socket问题。由于TCP协议基于流,难以确定消息批次的结束点,这给后门攻击的实现带来了挑战。为了解决这一问题,文章提出了一系列有效的技术方案,包括使用特定的分隔符和长度前缀,以确保数据包的准确传输和解析。这些方法不仅提高了攻击的隐蔽性和可靠性,还为安全研究人员提供了宝贵的参考。 ... [详细]
  • 通过使用 `pandas` 库中的 `scatter_matrix` 函数,可以有效地绘制出多个特征之间的两两关系。该函数不仅能够生成散点图矩阵,还能通过参数如 `frame`、`alpha`、`c`、`figsize` 和 `ax` 等进行自定义设置,以满足不同的可视化需求。此外,`diagonal` 参数允许用户选择对角线上的图表类型,例如直方图或密度图,从而提供更多的数据洞察。 ... [详细]
  • 分享一款基于Java开发的经典贪吃蛇游戏实现
    本文介绍了一款使用Java语言开发的经典贪吃蛇游戏的实现。游戏主要由两个核心类组成:`GameFrame` 和 `GamePanel`。`GameFrame` 类负责设置游戏窗口的标题、关闭按钮以及是否允许调整窗口大小,并初始化数据模型以支持绘制操作。`GamePanel` 类则负责管理游戏中的蛇和苹果的逻辑与渲染,确保游戏的流畅运行和良好的用户体验。 ... [详细]
  • 本文详细探讨了使用纯JavaScript开发经典贪吃蛇游戏的技术细节和实现方法。通过具体的代码示例,深入解析了游戏逻辑、动画效果及用户交互的实现过程,为开发者提供了宝贵的参考和实践经验。 ... [详细]
  • 每年,意甲、德甲、英超和西甲等各大足球联赛的赛程表都是球迷们关注的焦点。本文通过 Python 编程实现了一种生成赛程表的方法,该方法基于蛇形环算法。具体而言,将所有球队排列成两列的环形结构,左侧球队对阵右侧球队,首支队伍固定不动,其余队伍按顺时针方向循环移动,从而确保每场比赛不重复。此算法不仅高效,而且易于实现,为赛程安排提供了可靠的解决方案。 ... [详细]
  • 本文详细解析了客户端与服务器之间的交互过程,重点介绍了Socket通信机制。IP地址由32位的4个8位二进制数组成,分为网络地址和主机地址两部分。通过使用 `ipconfig /all` 命令,用户可以查看详细的IP配置信息。此外,文章还介绍了如何使用 `ping` 命令测试网络连通性,例如 `ping 127.0.0.1` 可以检测本机网络是否正常。这些技术细节对于理解网络通信的基本原理具有重要意义。 ... [详细]
  • Webdriver中元素定位的多种技术与策略
    在Webdriver中,元素定位是自动化测试的关键环节。本文详细介绍了8种常用的元素定位技术与策略,包括ID、名称、标签名、类名、链接文本、部分链接文本、XPath和CSS选择器。每种方法都有其独特的优势和适用场景,通过合理选择和组合使用,可以显著提高测试脚本的稳定性和效率。此外,文章还探讨了在复杂页面结构中如何灵活运用这些定位技术,以应对各种挑战。 ... [详细]
  • PHP网站日志深度解析与数据洞察分析
    通过对PHP网站日志进行深入解析与数据洞察分析,可以有效提升网站性能和用户体验。由于网站日志数据量庞大,通常需要借助专业的日志分析工具来处理。常用的工具包括光年日志分析工具和WebLog Expert等,这些工具能够帮助技术人员快速识别并解决网站运行中的各种问题,从而优化SEO效果和提升整体运营效率。 ... [详细]
author-avatar
如果你在的时候的世界_266
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有