热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python类别数据数字化LabelEncoder VS OneHotEncoder区别【python基础】

这篇文章主要为大家介绍了机器学习:数据预处理之将类别数据数字化的方法LabelEncoder VS OneHotEncoder区别详解,有需要的朋友可以借鉴参考下,希望能够有所帮助

LabelEncoder 和 OneHotEncoder 是什么

- 在数据处理过程中,我们有时需要对不连续的数字或者文本进行数字化处理。
- 在使用 Python 进行数据处理时,用 encoder 来转化 dummy variable(虚拟数据)非常简便,encoder 可以将数据集中的文本转化成0或1的数值。
- LabelEncoder 和 OneHotEncoder 是 scikit-learn 包中的两个功能,可以实现上述的转化过程。
- sklearn.preprocessing.LabelEncoder
- sklearn.preprocessing.OneHotEncoder 

数据集中的类别数据

在使用回归模型和机器学习模型时,所有的考察数据都是数值更容易得到好的结果。
因为回归和机器学习都是基于数学函数方法的,所以当我们要分析的数据集中出现了类别数据(categorical data),此时的数据是不理想的,因为我们不能用数学的方法处理它们。

例如,在处理男和女两个性别数据时,我们用0和1将其代替,再进行分析。

由于这种情况的出现,我们需要可以将文字数字化的现成方法。

LabelEncoder 和 OneHotEncoder 的区别

具体代码

import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.cross_validation import train_test_split
# 读取数据
data_df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/"
                 "breast-cancer-wisconsin/wdbc.data", header=None)
# 前面的数据是特征,最后一列是标签label
x, y = data_df.values[:, :-1], data_df.values[:, -1]
# 先实例化一个对象
encoder_x = LabelEncoder() 
# 对标签进行类别数据数字化
y = encoder_x.fit_transform( y )

以上就是python 数据数字化的方法LabelEncoder VS OneHotEncoder区别的详细内容,更多关于LabelEncoder VS OneHotEncoder的资料请关注编程笔记其它相关文章!


推荐阅读
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
  • 离线环境下的Python及其第三方库安装指南
    在项目开发中,有时会遇到电脑只能连接内网或完全无法联网的情况。本文将详细介绍如何在这种环境下安装Python及其所需的第三方库,确保开发工作的顺利进行。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文深入探讨了 Python 中的循环结构(包括 for 循环和 while 循环)、函数定义与调用,以及面向对象编程的基础概念。通过详细解释和代码示例,帮助读者更好地理解和应用这些核心编程元素。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • This document outlines the recommended naming conventions for HTML attributes in Fast Components, focusing on readability and consistency with existing standards. ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • Google最新推出的嵌入AI技术的便携式相机Clips现已上架,旨在通过人工智能技术自动捕捉用户生活中值得纪念的时刻,帮助人们减少照片数量过多的问题。 ... [详细]
  • 在现代网络环境中,两台计算机之间的文件传输需求日益增长。传统的FTP和SSH方式虽然有效,但其配置复杂、步骤繁琐,难以满足快速且安全的传输需求。本文将介绍一种基于Go语言开发的新一代文件传输工具——Croc,它不仅简化了操作流程,还提供了强大的加密和跨平台支持。 ... [详细]
  • 本文详细介绍了在Android 8.x中,GMS认证新增的CTS和VTS测试,特别是如何在VTS环境下测试GSI版本。文章涵盖了详细的测试环境配置和具体操作步骤。 ... [详细]
  • 图数据库中的知识表示与推理机制
    本文探讨了图数据库及其技术生态系统在知识表示和推理问题上的应用。通过理解图数据结构,尤其是属性图的特性,可以为复杂的数据关系提供高效且优雅的解决方案。我们将详细介绍属性图的基本概念、对象建模、概念建模以及自动推理的过程,并结合实际代码示例进行说明。 ... [详细]
  • 本文介绍了如何利用npm脚本和concurrently工具,实现本地开发环境中多个监听服务的同时启动,包括HTTP服务、自动刷新、Sass和ES6支持。 ... [详细]
  • 解决C++编译错误C3867的方法
    本文详细介绍了在不同版本的Visual Studio中,如何正确处理成员函数指针以避免编译错误C3867。同时,提供了一个具体的代码示例及其优化方案。 ... [详细]
author-avatar
流行天王MJ
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有