热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python降维函数_主成分分析无监督降维PCA在Python中numpy和scikitlearn函数库的实现过程...

1、PCA算法介绍主成分分析(PrincipalComponentsAnalysis),简称PCA,是一种数据降维技术,用于数据预处理。一

1、PCA算法介绍

主成分分析(Principal Components

Analysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征。这样不仅可以去除无用的噪声,还能减少很大的计算量。

PCA算法是如何实现的?

简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,z),x、y、z分别是原始空间的三个基,我们可以通过某种方法,用新的坐标系(a,b,c)来表示原始的数据,那么a、b、c就是新的基,它们组成新的特征空间。在新的特征空间中,可能所有的数据在c上的投影都接近于0,即可以忽略,那么我们就可以直接用(a,b)来表示数据,这样数据就从三维的(x,y,z)降到了二维的(a,b)。

问题是如何求新的基(a,b,c)?

一般步骤是这样的:先对原始数据零均值化,然后求协方差矩阵,接着对协方差矩阵求特征向量和特征值,这些特征向量组成了新的特征空间。具体的细节,推荐Andrew

Ng的网页教程:Ufldl 主成分分析 ,写得很详细。

2、PCA算法实现

语言:Python

函数库:Numpy

>>> import numpy as np

根据上面提到的一般步骤来实现PCA算法

(1)零均值化

假如原始数据集为矩阵dataMat,dataMat中每一行代表一个样本,每一列代表同一个特征。零均值化就是求每一列的平均值,然后该列上的所有数都减去这个均值。也就是说,这里零均值化是对每一个特征而言的,零均值化都,每个特征的均值变成0。实现代码如下:

def zeroMean(dataMat):

meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值

newData=dataMat-meanVal

return

newData,meanVal

函数中用numpy中的mean方法来求均值,axis=0表示按列求均值。

该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。

(2)求协方差矩阵

newData,meanVal=zeroMean(dataMat)

covMat=np.cov(newData,rowvar=0)

numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。

covMat即所求的协方差矩阵。

(3)求特征值、特征矩阵

调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:

eigVals,eigVects=np.linalg.eig(np.mat(covMat))

eigVals存放特征值,行向量。

eigVects存放特征向量,每一列带别一个特征向量。

特征值和特征向量是一一对应的

(4)保留主要的成分[即保留值比较大的前n个特征]

第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:

eigValIndice=np.argsort(eigVals) #对特征值从小到大排序

n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标

n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量

lowDDataMat=newData*n_eigVect #低维特征空间的数据

reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据

return

lowDDataMat,reconMat

代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】

reconMat是重构的数据,乘以n_eigVect的转置矩阵,再加上均值meanVal。

OK,这四步下来就可以从高维的数据dataMat得到低维的数据lowDDataMat,另外,程序也返回了重构数据reconMat,有些时候reconMat课便于数据分析。

贴一下总的代码:

#零均值化

def zeroMean(dataMat):

meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值

newData=dataMat-meanVal

return

newData,meanVal

def pca(dataMat,n):

newData,meanVal=zeroMean(dataMat)

covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return

ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本

eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量

eigValIndice=np.argsort(eigVals) #对特征值从小到大排序

n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标

n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量

lowDDataMat=newData*n_eigVect #低维特征空间的数据

reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据

return

lowDDataMat,reconMat

3、选择主成分个数

文章写到这里还没有完,应用PCA的时候,对于一个1000维的数据,我们怎么知道要降到几维的数据才是合理的?即n要取多少,才能保留最多信息同时去除最多的噪声?一般,我们是通过方差百分比来确定n的,这一点在Ufldl教程中说得很清楚,并且有一条简单的公式,下面是该公式的截图:

根据这条公式,可以写个函数,函数传入的参数是百分比percentage和特征值向量,然后根据percentage确定n,代码如下:

def percentage2n(eigVals,percentage):

sortArray=np.sort(eigVals) #升序

sortArray=sortArray[-1::-1] #逆转,即降序

arraySum=sum(sortArray)

tmpSum=0

num=0

for i in

sortArray:

tmpSum+=i

num+=1

if tmpSum>=arraySum*percentage:

return

num

那么pca函数也可以重写成百分比版本,默认百分比99%。

def pca(dataMat,percentage=0.99):

newData,meanVal=zeroMean(dataMat)

covMat=np.cov(newData,rowvar=0) #求协方差矩阵,return

ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本

eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量

n=percentage2n(eigVals,percentage) #要达到percent的方差百分比,需要前n个特征向量

eigValIndice=np.argsort(eigVals) #对特征值从小到大排序

n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标

n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量

lowDDataMat=newData*n_eigVect #低维特征空间的数据

reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据

return

lowDDataMat,reconMat

3、基于python带有功能强大的sklearn库实现PCA的代码:

#coding=utf-8

import numpy as np

from sklearn.decomposition import PCA

X = np.array([[-1,2,66,-1], [-2,6,58,-1], [-3,8,45,-2],

[1,9,36,1], [2,10,62,1],

[3,5,83,2]]) #导入数据,维度为4

pca =

PCA(n_components=2) #降到2维

pca.fit(X) #训练

newX=pca.fit_transform(X) #降维后的数据

# PCA(copy=True, n_components=2, whiten=False)

print(pca.explained_variance_ratio_) #输出贡献率

print(newX) #输出降维后的数据

参数解释:

n_components: 我们可以利用此参数设置想要的特征维度数目,可以是int型的数字,也可以是阈值百分比,如95%,让PCA类根据样本特征方差来降到合适的维数,也可以指定为string类型,MLE。

copy:

bool类型,TRUE或者FALSE,是否将原始数据复制一份,这样运行后原始数据值不会改变,默认为TRUE。

whiten:bool类型,是否进行白化(就是对降维后的数据进行归一化,使方差为1),默认为FALSE。如果需要后续处理可以改为TRUE。

explained_variance_: 代表降为后各主成分的方差值,方差值越大,表明越重要。

explained_variance_ratio_: 代表各主成分的贡献率。

inverse_transform():

将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)。



推荐阅读
  • iOS超签签名服务器搭建及其优劣势
    本文介绍了搭建iOS超签签名服务器的原因和优势,包括不掉签、用户可以直接安装不需要信任、体验好等。同时也提到了超签的劣势,即一个证书只能安装100个,成本较高。文章还详细介绍了超签的实现原理,包括用户请求服务器安装mobileconfig文件、服务器调用苹果接口添加udid等步骤。最后,还提到了生成mobileconfig文件和导出AppleWorldwideDeveloperRelationsCertificationAuthority证书的方法。 ... [详细]
  • 本文详细介绍了Spring的JdbcTemplate的使用方法,包括执行存储过程、存储函数的call()方法,执行任何SQL语句的execute()方法,单个更新和批量更新的update()和batchUpdate()方法,以及单查和列表查询的query()和queryForXXX()方法。提供了经过测试的API供使用。 ... [详细]
  • 基于Socket的多个客户端之间的聊天功能实现方法
    本文介绍了基于Socket的多个客户端之间实现聊天功能的方法,包括服务器端的实现和客户端的实现。服务器端通过每个用户的输出流向特定用户发送消息,而客户端通过输入流接收消息。同时,还介绍了相关的实体类和Socket的基本概念。 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 如何自行分析定位SAP BSP错误
    The“BSPtag”Imentionedintheblogtitlemeansforexamplethetagchtmlb:configCelleratorbelowwhichi ... [详细]
  • 本文讨论了一个关于cuowu类的问题,作者在使用cuowu类时遇到了错误提示和使用AdjustmentListener的问题。文章提供了16个解决方案,并给出了两个可能导致错误的原因。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 前景:当UI一个查询条件为多项选择,或录入多个条件的时候,比如查询所有名称里面包含以下动态条件,需要模糊查询里面每一项时比如是这样一个数组条件:newstring[]{兴业银行, ... [详细]
  • 摘要: 在测试数据中,生成中文姓名是一个常见的需求。本文介绍了使用C#编写的随机生成中文姓名的方法,并分享了相关代码。作者欢迎读者提出意见和建议。 ... [详细]
  • 本文讨论了Kotlin中扩展函数的一些惯用用法以及其合理性。作者认为在某些情况下,定义扩展函数没有意义,但官方的编码约定支持这种方式。文章还介绍了在类之外定义扩展函数的具体用法,并讨论了避免使用扩展函数的边缘情况。作者提出了对于扩展函数的合理性的质疑,并给出了自己的反驳。最后,文章强调了在编写Kotlin代码时可以自由地使用扩展函数的重要性。 ... [详细]
  • 第四章高阶函数(参数传递、高阶函数、lambda表达式)(python进阶)的讲解和应用
    本文主要讲解了第四章高阶函数(参数传递、高阶函数、lambda表达式)的相关知识,包括函数参数传递机制和赋值机制、引用传递的概念和应用、默认参数的定义和使用等内容。同时介绍了高阶函数和lambda表达式的概念,并给出了一些实例代码进行演示。对于想要进一步提升python编程能力的读者来说,本文将是一个不错的学习资料。 ... [详细]
  • 本文讨论了一个数列求和问题,该数列按照一定规律生成。通过观察数列的规律,我们可以得出求解该问题的算法。具体算法为计算前n项i*f[i]的和,其中f[i]表示数列中有i个数字。根据参考的思路,我们可以将算法的时间复杂度控制在O(n),即计算到5e5即可满足1e9的要求。 ... [详细]
  • Python爬虫中使用正则表达式的方法和注意事项
    本文介绍了在Python爬虫中使用正则表达式的方法和注意事项。首先解释了爬虫的四个主要步骤,并强调了正则表达式在数据处理中的重要性。然后详细介绍了正则表达式的概念和用法,包括检索、替换和过滤文本的功能。同时提到了re模块是Python内置的用于处理正则表达式的模块,并给出了使用正则表达式时需要注意的特殊字符转义和原始字符串的用法。通过本文的学习,读者可以掌握在Python爬虫中使用正则表达式的技巧和方法。 ... [详细]
  • This article discusses the efficiency of using char str[] and char *str and whether there is any reason to prefer one over the other. It explains the difference between the two and provides an example to illustrate their usage. ... [详细]
  • SpringMVC接收请求参数的方式总结
    本文总结了在SpringMVC开发中处理控制器参数的各种方式,包括处理使用@RequestParam注解的参数、MultipartFile类型参数和Simple类型参数的RequestParamMethodArgumentResolver,处理@RequestBody注解的参数的RequestResponseBodyMethodProcessor,以及PathVariableMapMethodArgumentResol等子类。 ... [详细]
author-avatar
孤独游侠1976_127
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有