作者:single | 来源:互联网 | 2023-08-24 15:33
全栈工程师开发手册 (作者:栾鹏) python教程全解
github地址:https://github.com/626626cdllp/kears/tree/master/Face_Recognition
图片来源
图片中共40个人,每人10张图片,每张图片高57,宽47。共400张图片。
读取图片的py文件 import numpy import pandas from PIL import Image from keras import backend as K from keras.utils import np_utils""" 加载图像数据的函数,dataset_path即图像olivettifaces的路径 加载olivettifaces后,划分为train_data,valid_data,test_data三个数据集 函数返回train_data,valid_data,test_data以及对应的label """# 400个样本,40个人,每人10张样本图。每张样本图高57*宽47,需要2679个像素点。每个像素点做了归一化处理 def load_data(dataset_path):img = Image.open(dataset_path)img_ndarray = numpy.asarray(img, dtype='float64') / 256print(img_ndarray.shape)faces = numpy.empty((400,57,47))for row in range(20):for column in range(20):faces[row * 20 + column] = img_ndarray[row * 57:(row + 1) * 57, column * 47:(column + 1) * 47]# 设置400个样本图的标签label = numpy.empty(400)for i in range(40):label[i * 10:i * 10 + 10] = ilabel = label.astype(numpy.int)label = np_utils.to_categorical(label, 40) # 将40分类类标号转化为one-hot编码# 分成训练集、验证集、测试集,大小如下train_data = numpy.empty((320, 57,47)) # 320个训练样本train_label = numpy.empty((320,40)) # 320个训练样本,每个样本40个输出概率valid_data = numpy.empty((40, 57,47)) # 40个验证样本valid_label = numpy.empty((40,40)) # 40个验证样本,每个样本40个输出概率test_data = numpy.empty((40, 57,47)) # 40个测试样本test_label = numpy.empty((40,40)) # 40个测试样本,每个样本40个输出概率for i in range(40):train_data[i * 8:i * 8 + 8] = faces[i * 10:i * 10 + 8]train_label[i * 8:i * 8 + 8] = label[i * 10:i * 10 + 8]valid_data[i] = faces[i * 10 + 8]valid_label[i] = label[i * 10 + 8]test_data[i] = faces[i * 10 + 9]test_label[i] = label[i * 10 + 9]return [(train_data, train_label), (valid_data, valid_label),(test_data, test_label)]if __name__ == '__main__':[(train_data, train_label), (valid_data, valid_label), (test_data, test_label)] = load_data('olivettifaces.gif')oneimg = train_data[0]*256print(oneimg)im = Image.fromarray(oneimg)im.show()
CNN人脸识别代码 import numpy as np np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D,AveragePooling2D from PIL import Image import FaceData # 全局变量 batch_size = 128 # 批处理样本数量 nb_classes = 40 # 分类数目 epochs = 600 # 迭代次数 img_rows, img_cols = 57, 47 # 输入图片样本的宽高 nb_filters = 32 # 卷积核的个数 pool_size = (2, 2) # 池化层的大小 kernel_size = (5, 5) # 卷积核的大小 input_shape = (img_rows, img_cols,1) # 输入图片的维度[(X_train, Y_train), (X_valid, Y_valid),(X_test, Y_test)] =FaceData.load_data('olivettifaces.gif')X_train=X_train[:,:,:,np.newaxis] # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数 X_valid=X_valid[:,:,:,np.newaxis] # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数 X_test=X_test[:,:,:,np.newaxis] # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数print('样本数据集的维度:', X_train.shape,Y_train.shape) print('测试数据集的维度:', X_test.shape,Y_test.shape)# 构建模型 model = Sequential() model.add(Conv2D(6,kernel_size,input_shape=input_shape,strides=1)) # 卷积层1 model.add(AveragePooling2D(pool_size=pool_size,strides=2)) # 池化层 model.add(Conv2D(12,kernel_size,strides=1)) # 卷积层2 model.add(AveragePooling2D(pool_size=pool_size,strides=2)) # 池化层 model.add(Flatten()) # 拉成一维数据 model.add(Dense(nb_classes)) # 全连接层2 model.add(Activation('sigmoid')) # sigmoid评分# 编译模型 model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy']) # 训练模型 model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,verbose=1, validation_data=(X_test, Y_test)) # 评估模型 score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1])y_pred = model.predict(X_test) y_pred = y_pred.argmax(axis=1) # 获取概率最大的分类,获取每行最大值所在的列 for i in range(len(y_pred)):oneimg = X_test[i,:,:,0]*256im = Image.fromarray(oneimg)im.show()print('第%d个人识别为第%d个人'%(i,y_pred[i]))
600次迭代,正确率90%,当然只用了10个样本进行测试,所以准确率不是特别准确。