热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python多线程机制深入理解

今天要跟大家一起来学习一下Python的多线程机制。有两个原因,其一是自己在学习中经常会使用到多线程,其二当然是自己对Python中的多线程并不是很了解

今天要跟大家一起来学习一下Python的多线程机制。有两个原因,其一是自己在学习中经常会使用到多线程,其二当然是自己对Python中的多线程并不是很了解。那么,今天和大家一起了解下~

Python多线程机制

开发多线程的应用系统,是在日常开发中经常会遇到的需求。同时,Python也为多线程系统的开发提供了很好的支持。
大家应该都知道,Python多线程机制是在GIL(Global Interpreter Lock)全局解释锁的基础上建立的。

那么Python为什么需要全局解释锁?

为什么需要全局解释锁?

我们知道,要支持多线程的话,一个基本的要求就是不同线程对共享资源访问的互斥,所以Python中引入了GIL,当然这是第一个原因。

Python中的GIL是一个非常霸道的互斥实现,在一个线程拥有了解释器的访问权之后,其它的所有线程都必须等待它释放解释器的访问权,即使这些线程的下一条指令并不会互相影响。

这样的说法也就意味着,无论如何,在同一时间,只能有一个线程能访问Python提供的API。因为单处理器的本质是不可能并行的,这里的同一时间确实对于单处理器是毫无意义的,但是对于多处理器,同一时间,确实可以有多个时间独立运行。然而正是由于GIL限制了这样的情形,使得多处理器最终退化为单处理器,性能大打折扣。那么,为什么还要使用GIL呢?这里就要提到第二个原因。

当然,Python社区也早都认识到了这个问题,并且在不断探索,Greg Stein和Mark Hammond两位老兄曾经创建过一份去除GIL的branch,但是很不幸,这个分支在很多的基准测试中,尤其是在单线程的测试上,效率只有使用GIL的一半左右。

使用GIL时,保护机制的粒度比较大,也就是我们似乎只需要将可能被多个线程共享的资源保护起来即可,对于不会被多个线程共享的资源,完全可以不用保护。但是,如果使用更细粒度的锁机制进行保护,那么,会导致大量的加锁和解锁功能,加锁和解锁对于操作系统来说,是一个比较重量级的动作,同时,没有GIL的保护,编写Python的扩展模块的难度也大大增加。

所以,目前为止,GIL仍然是多线程机制的基石。

对于Python而言,字节码解释器是Python的核心所在,所以Python通过GIL来互斥不同线程对解释器的使用。这里举个例子进行说明:

假设,现在有三个线程A、B和C,它们都需要解释器来执行字节码,进行对应的计算,那么在这之前,它们必须获得GIL。那么现在假设线程A获得了GIL,其它线程只能等A释放GIL之后,才能获得。

对!是这样没错,于是,有两个问题:

1. 线程A何时释放GIL呢(如果A使用完解释器之后才释放GIL,那么,并行的计算退化为串行,多线程的意义何在?)

2. 线程B和C谁将在A释放GIL之后获得GIL呢?

所以毫无疑问的,Python拥有其自己的一套线程调度机制。

关于线程调度

和操作系统的进程调度一样,线程调度机制主要解决两个问题:

1. 在何时挂起当前线程,选择处于等待状态的下一个线程?

2. 在众多处于等待状态的线程中,应该选择激活哪个线程?

对于何时进行线程调度的问题,是由Python自身决定的。我们可以联想操作系统进行进程切换的问题,当一个进程执行了一段时间之后,发生了时钟中断,于是操作系统响应时钟中断,并在这时开始进程的调度。

与此类似,Python中通过软件模拟了这样的中断,来激活线程的调度。Python的字节码解释器是按照指令的顺序一条一条的顺序执行从而工作的,Python内部维护着这样一个数值,作为Python内部的时钟,假设这个值为N,那么Python将在执行了N条指令之后立刻启动线程调度机制。

也就是说,当一个线程获得GIL后,Python内部的监测机制就开始启动,当这个线程执行了N条指令后,Python解释器将强制挂起当前线程,开始切换到下一个处于等待状态的线程。

在Python中,可以这样获得这个数值(N):

那么,下一个问题,Python会在众多等待的线程中选择哪一个呢?

答案是,不知道。因为这个问题是交给了底层的操作系统来解决的,Python借用了底层操作系统所提供的线程调度机制来决定下一个获得GIL进入解释器的线程是谁。

所以说,Python中的线程实际上就是操作系统所支持的原生线程。

那么,接下来,我们一起揭开Python中GIL的真实面目。

关于GIL

应该知道,Python中多线程常用的两个模块:Thread和在其之上的threading。其中Thread是使用C实现的,而Threading是用python实现。

我们可以通过Thread模块进行分析(以Python2.7.13为例)。

创建线程
首先从创建线程说起,在threadmodule.c中,thread_PyThread_start_new_thread()函数通过三个主要的动作完成一个线程的创建:

//创建bootstate结构
boot = PyMem_NEW(struct bootstate, 1);
if (boot == NULL)
return PyErr_NoMemory();
boot->interp = PyThreadState_GET()->interp;
boot->func = func;
boot->args = args;
boot->keyw = keyw;
boot->tstate = _PyThreadState_Prealloc(boot->interp);
if (boot->tstate == NULL) {
PyMem_DEL(boot);
return PyErr_NoMemory();
}
Py_INCREF(func);
Py_INCREF(args);
Py_XINCREF(keyw);
// 初始化多线程环境
PyEval_InitThreads(); 
//创建线程
ident = PyThread_start_new_thread(t_bootstrap, (void*) boot);
if (ident == -1) {
PyErr_SetString(ThreadError, "can't start new thread");
Py_DECREF(func);
Py_DECREF(args);
Py_XDECREF(keyw);
PyThreadState_Clear(boot->tstate);
PyMem_DEL(boot);
return NULL;
}
return PyInt_FromLong(ident);

1. 创建并初始化bootstate结构boot,在boot中,将保存关于Python的一切信息(线程过程,线程过程参数等)。

2. 初始化Python的多线程环境。

3. 以boot为参数,创建操作系统的原生线程。

从以上代码可以看出,Python在刚启动时,并不支持多线程,也就是说,Python中支持多线程的数据结构以及GIL都是没有创建的。当然这是因为大多数的Python程序都不需要Python的支持。

在Python虚拟机启动时,多线程机制并没有被激活,它只支持单线程,一旦用户调用thread.start_new_thread,明确的告诉Python虚拟机需要创建新的线程,这时Python意识到用户需要多线程的支持,这个时候,Python虚拟机会自动建立多线程需要的数据结构、环境以及GIL。

建立多线程环境

建立多线程环境,主要就是创建GIL。那么GIL是如何实现的呢?
打开"python/ceval.c":

static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */
static PyThread_type_lock pending_lock = 0; /* for pending calls */
static long main_thread = 0;

int
PyEval_ThreadsInitialized(void)
{
return interpreter_lock != 0;
}

void
PyEval_InitThreads(void)
{
if (interpreter_lock)
return;
interpreter_lock = PyThread_allocate_lock();
PyThread_acquire_lock(interpreter_lock, 1);
main_thread = PyThread_get_thread_ident();
}

在这段代码中,iterpreter_lock就是GIL。

无论创建多少个线程,Python建立多线程环境的动作只会执行一次。在创建GIL之前,Python会检查GIL是否已经被创建,如果是,则不再进行任何动作,否则,就会去创建这个GIL。

在上述代码中,我们可以看到,创建GIL使用的是Pythread_allocate_lock完成的,下面看看该函数的内部实现:

PyThread_type_lock
PyThread_allocate_lock(void)
{
PNRMUTEX aLock;

dprintf(("PyThread_allocate_lock called\n"));
if (!initialized)
PyThread_init_thread();

aLock = AllocNonRecursiveMutex() ;

dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));

return (PyThread_type_lock) aLock;
}

可以看到该函数返回了alock,alock是结构体PNRMUTEX,实际上就是我们需要创建的那个interperter_lock(GIL)。这么说来,GIL就是结构体PNRMUTEX呀,于是我们找来它的真身:

typedef struct NRMUTEX {
LONG owned ;
DWORD thread_id ;
HANDLE hevent ;
} NRMUTEX, *PNRMUTEX ;

这里又三个变量,owned、thread_id和hevent。这里的hevent是windows平台下的Event这个内核对象,也就是通过Event来实现线程之间的互斥。thread_id将记录任一时刻获得GIL的线程的id。

那么owned是什么呢?

GIL中的owned是指示GIL是否可用的变量,它的值被初始化为-1,Python会检查这个值是否为1,如果是,则意味着GIL可用,必须将其置为0,当owned为0后,表示该GIL已经被一个线程占用,不可再用;同时,当一个线程开始等待GIL时,其owned就会被增加1;当一个线程最终释放GIL时,一定会将GIL的owned减1,这样,当所有需要GIL的线程都最终释放了GIL之后,owned将再次变为-1,意味着GIL再次变为可用。

关于Python中的多线程,今天我们就学到这里。


推荐阅读
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • andr ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 本文详细介绍了Java中org.eclipse.ui.forms.widgets.ExpandableComposite类的addExpansionListener()方法,并提供了多个实际代码示例,帮助开发者更好地理解和使用该方法。这些示例来源于多个知名开源项目,具有很高的参考价值。 ... [详细]
  • ImmutableX Poised to Pioneer Web3 Gaming Revolution
    ImmutableX is set to spearhead the evolution of Web3 gaming, with its innovative technologies and strategic partnerships driving significant advancements in the industry. ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本文详细探讨了VxWorks操作系统中双向链表和环形缓冲区的实现原理及使用方法,通过具体示例代码加深理解。 ... [详细]
  • 本题涉及一棵由N个节点组成的树(共有N-1条边),初始时所有节点均为白色。题目要求处理两种操作:一是改变某个节点的颜色(从白变黑或从黑变白);二是查询从根节点到指定节点路径上的第一个黑色节点,若无则输出-1。 ... [详细]
  • 本题通过将每个矩形视为一个节点,根据其相对位置构建拓扑图,并利用深度优先搜索(DFS)或状态压缩动态规划(DP)求解最小涂色次数。本文详细解析了该问题的建模思路与算法实现。 ... [详细]
author-avatar
物之美者,招摇之桂
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有