本文详细介绍了如何使用Python的多进程技术来高效地分块读取超大文件,并将其输出为多个文件。通过这种方式,可以显著提高读取速度和处理效率。具体内容如下:
读取超大的文本文件时,使用多进程分块读取方法,可以将每个分块单独输出成文件。
# -*- coding: UTF-8 -*-
import os
import datetime
from multiprocessing import Process, Queue, Array, RLock
"""
多进程分块读取文件
"""
WORKERS = 4
BLOCKSIZE = 100000000
FILE_SIZE = 0
def get_file_size(file_path):
"""
获取文件的大小
"""
global FILE_SIZE
with open(file_path, 'r') as f:
f.seek(0, os.SEEK_END)
FILE_SIZE = f.tell()
def process_block(pid, array, file_path, rlock):
"""
处理文件块的函数
Args:
pid: 进程编号
array: 进程间共享数组,用于标记各进程所读的文件块结束位置
file_path: 要读取的文件路径
"""
global FILE_SIZE
with open(file_path, 'r') as f:
while True:
rlock.acquire()
start_position = max(array)
end_position = min(start_position + BLOCKSIZE, FILE_SIZE)
array[pid] = end_position
rlock.release()
if start_position == FILE_SIZE:
print(f'Process {pid} finished')
break
if start_position != 0:
f.seek(start_position)
f.readline() # 读取并丢弃一行,防止行被截断
with open(f'/data/output/block_{pid}_{start_position}.txt', 'w') as out_f:
while f.tell() line = f.readline()
out_f.write(line)
def main():
global FILE_SIZE
print(datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S'))
file_path = '/data/large_file.txt'
get_file_size(file_path)
print(f'File size: {FILE_SIZE} bytes')
rlock = RLock()
array = Array('l', [0] * WORKERS, lock=rlock)
processes = []
for i in range(WORKERS):
p = Process(target=process_block, args=(i, array, file_path, rlock))
processes.append(p)
p.start()
for p in processes:
p.join()
print(datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S'))
if __name__ == '__main__':
main()
希望本文所述对大家Python程序设计有所帮助。