热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python2个子线程等待_python并发编程之多线程2死锁与递归锁,信号量等...

一、死锁现象与递归锁进程也是有死锁的所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作

一、死锁现象与递归锁

进程也是有死锁的

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,

它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,

如下就是死锁

1 死锁-------------------

2 from threading importThread,Lock,RLock3 importtime4 mutexA =Lock()5 mutexB =Lock()6 classMyThread(Thread):7 defrun(self):8 self.f1()9 self.f2()10 deff1(self):11 mutexA.acquire()12 print('\033[33m%s 拿到A锁'%self.name)13 mutexB.acquire()14 print('\033[45%s 拿到B锁'%self.name)15 mutexB.release()16 mutexA.release()17 deff2(self):18 mutexB.acquire()19 print('\033[33%s 拿到B锁' %self.name)20 time.sleep(1) #睡一秒就是为了保证A锁已经被别人那到了

21 mutexA.acquire()22 print('\033[45m%s 拿到B锁' %self.name)23 mutexA.release()24 mutexB.release()25 if __name__ == '__main__':26 for i in range(10):27 t =MyThread()28 t.start() #一开启就会去调用run方法

死锁现象

那么怎么解决死锁现象呢?

解决方法,递归锁:在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。

直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁

mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,

则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

1 #2.解决死锁的方法--------------递归锁

2 from threading importThread,Lock,RLock3 importtime4 mutexB = mutexA =RLock()5 classMyThread(Thread):6 defrun(self):7 self.f1()8 self.f2()9 deff1(self):10 mutexA.acquire()11 print('\033[33m%s 拿到A锁'%self.name)12 mutexB.acquire()13 print('\033[45%s 拿到B锁'%self.name)14 mutexB.release()15 mutexA.release()16 deff2(self):17 mutexB.acquire()18 print('\033[33%s 拿到B锁' %self.name)19 time.sleep(1) #睡一秒就是为了保证A锁已经被别人拿到了

20 mutexA.acquire()21 print('\033[45m%s 拿到B锁' %self.name)22 mutexA.release()23 mutexB.release()24 if __name__ == '__main__':25 for i in range(10):26 t =MyThread()27 t.start() #一开启就会去调用run方法

解决死锁

二、信号量Semaphore(其实也是一把锁)

Semaphore管理一个内置的计数器

Semaphore与进程池看起来类似,但是是完全不同的概念。

进程池:Pool(4),最大只能产生四个进程,而且从头到尾都只是这四个进程,不会产生新的。

信号量:信号量是产生的一堆进程/线程,即产生了多个任务都去抢那一把锁

1 from threading importThread,Semaphore,currentThread2 importtime,random3 sm = Semaphore(5) #运行的时候有5个人

4 deftask():5 sm.acquire()6 print('\033[42m %s上厕所'%currentThread().getName())7 time.sleep(random.randint(1,3))8 print('\033[31m %s上完厕所走了'%currentThread().getName())9 sm.release()10 if __name__ == '__main__':11 for i in range(20): #开了10个线程 ,这20人都要上厕所

12 t = Thread(target=task)13 t.start()

Semaphore举例

1 hread-1上厕所2 Thread-2上厕所3 Thread-3上厕所4 Thread-4上厕所5 Thread-5上厕所6 Thread-3上完厕所走了7 Thread-6上厕所8 Thread-1上完厕所走了9 Thread-7上厕所10 Thread-2上完厕所走了11 Thread-8上厕所12 Thread-6上完厕所走了13 Thread-5上完厕所走了14 Thread-4上完厕所走了15 Thread-9上厕所16 Thread-10上厕所17 Thread-11上厕所18 Thread-9上完厕所走了19 Thread-12上厕所20 Thread-7上完厕所走了21 Thread-13上厕所22 Thread-10上完厕所走了23 Thread-8上完厕所走了24 Thread-14上厕所25 Thread-15上厕所26 Thread-12上完厕所走了27 Thread-11上完厕所走了28 Thread-16上厕所29 Thread-17上厕所30 Thread-14上完厕所走了31 Thread-15上完厕所走了32 Thread-17上完厕所走了33 Thread-18上厕所34 Thread-19上厕所35 Thread-20上厕所36 Thread-13上完厕所走了37 Thread-20上完厕所走了38 Thread-16上完厕所走了39 Thread-18上完厕所走了40 Thread-19上完厕所走了

运行结果

三、Event

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

from threading import Event

Event.isSet() #返回event的状态值

Event.wait() #如果 event.isSet()==False将阻塞线程;

Event.set() #设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

Event.clear() #恢复

例如1.,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作

1 #首先定义两个函数,一个是连接数据库

2 #一个是检测数据库

3 from threading importThread,Event,currentThread4 importtime5 e =Event()6 defconn_mysql():7 '''链接数据库'''

8 count = 1

9 while not e.is_set(): #当没有检测到时候

10 if count >3: #如果尝试次数大于3,就主动抛异常

11 raise ConnectionError('尝试链接的次数过多')12 print('\033[45m%s 第%s次尝试'%(currentThread(),count))13 e.wait(timeout=1) #等待检测(里面的参数是超时1秒)

14 count+=1

15 print('\033[44m%s 开始链接...'%(currentThread().getName()))16 defcheck_mysql():17 '''检测数据库'''

18 print('\033[42m%s 检测mysql...' %(currentThread().getName()))19 time.sleep(5)20 e.set()21 if __name__ == '__main__':22 for i in range(3): #三个去链接

23 t = Thread(target=conn_mysql)24 t.start()25 t = Thread(target=check_mysql)26 t.start()

详看

2.例如2,红绿灯的例子

1 from threading importThread,Event,currentThread2 importtime3 e =Event()4 deftraffic_lights():5 '''红绿灯'''

6 time.sleep(5)7 e.set()8 defcar():9 '''车'''

10 print('\033[42m %s 等绿灯\033[0m'%currentThread().getName())11 e.wait()12 print('\033[44m %s 车开始通行' %currentThread().getName())13 if __name__ == '__main__':14 for i in range(10):15 t = Thread(target=car) #10辆车

16 t.start()17 traffic_thread = Thread(target=traffic_lights) #一个红绿灯

18 traffic_thread.start()

红绿灯

四、定时器(Timer)

指定n秒后执行某操作

from threading importTimerdeffunc(n):print('hello,world',n)

t= Timer(3,func,args=(123,)) #等待三秒后执行func函数,因为func函数有参数,那就再传一个参数进去

t.start()

五、线程queue

queue队列 :使用import queue,用法与进程Queue一样

queue.Queue(maxsize=0) #先进先出

1 #1.队列-----------

2 importqueue3 q = queue.Queue(3) #先进先出

4 q.put('first')5 q.put('second')6 q.put('third')7 print(q.get())8 print(q.get())9 print(q.get())

View Code

queue.LifoQueue(maxsize=0)#先进后出

1 #2.堆栈----------

2 q = queue.LifoQueue() #先进后出(或者后进先出)

3 q.put('first')4 q.put('second')5 q.put('third')6 q.put('for')7 print(q.get())8 print(q.get())9 print(q.get())

View Code

queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

1 #----------------

2 '''3.put进入一个元组,元组的第一个元素是优先级3 (通常也可以是数字,或者也可以是非数字之间的比较)4 数字越小,优先级越高'''

5 q =queue.PriorityQueue()6 q.put((20,'a'))7 q.put((10,'b')) #先出来的是b,数字越小优先级越高嘛

8 q.put((30,'c'))9 print(q.get())10 print(q.get())11 print(q.get())

View Code

六、多线程性能测试

1.多核也就是多个CPU

(1)cpu越多,提高的是计算的性能

(2)如果程序是IO操作的时候(多核和单核是一样的),再多的cpu也没有意义。

2.实现并发

第一种:一个进程下,开多个线程

第二种:开多个进程

3.多进程:

优点:可以利用多核

缺点:开销大

4.多线程

优点:开销小

缺点:不可以利用多核

5多进程和多进程的应用场景

1.计算密集型:也就是计算多,IO少

如果是计算密集型,就用多进程(如金融分析等)

2.IO密集型:也就是IO多,计算少

如果是IO密集型的,就用多线程(一般遇到的都是IO密集型的)

下例子练习:

1 #计算密集型的要开启多进程

2 from multiprocessing importProcess3 from threading importThread4 importtime5 defwork():6 res =07 for i in range(10000000):8 res+=i9 if __name__ == '__main__':10 l =[]11 start =time.time()12 for i in range(4):13 p = Process(target=work) #1.9371106624603271 #可以利用多核(也就是多个cpu)

14 #p = Thread(target=work) #3.0401737689971924

15 l.append(p)16 p.start()17 for p inl:18 p.join()19 stop =time.time()20 print('%s'%(stop-start))

计算密集型

1 #I/O密集型要开启多线程

2 from multiprocessing importProcess3 from threading importThread4 importtime5 defwork():6 time.sleep(3)7 if __name__ == '__main__':8 l =[]9 start =time.time()10 for i in range(400):11 #p = Process(target=work) #34.9549994468689 #因为开了好多进程,它的开销大,花费的时间也就长了

12 p = Thread(target=work) #2.2151265144348145 #当开了多个线程的时候,它的开销小,花费的时间也小了

13 l.append(p)14 p.start()15 for i inl :16 i.join()17 stop =time.time()18 print('%s'%(stop-start))

I/O密集型

七、python标准模块----concurrent.futures



推荐阅读
  • 本文探讨了 Spring Boot 应用程序在不同配置下支持的最大并发连接数,重点分析了内置服务器(如 Tomcat、Jetty 和 Undertow)的默认设置及其对性能的影响。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 并发编程:深入理解设计原理与优化
    本文探讨了并发编程中的关键设计原则,特别是Java内存模型(JMM)的happens-before规则及其对多线程编程的影响。文章详细介绍了DCL双重检查锁定模式的问题及解决方案,并总结了不同处理器和内存模型之间的关系,旨在为程序员提供更深入的理解和最佳实践。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • 本文详细分析了Hive在启动过程中遇到的权限拒绝错误,并提供了多种解决方案,包括调整文件权限、用户组设置以及环境变量配置等。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文探讨了如何优化和正确配置Kafka Streams应用程序以确保准确的状态存储查询。通过调整配置参数和代码逻辑,可以有效解决数据不一致的问题。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • MySQL 数据库迁移指南:从本地到远程及磁盘间迁移
    本文详细介绍了如何在不同场景下进行 MySQL 数据库的迁移,包括从一个硬盘迁移到另一个硬盘、从一台计算机迁移到另一台计算机,以及解决迁移过程中可能遇到的问题。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
author-avatar
井爱3053_170
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有