作者:大工 | 来源:互联网 | 2017-05-14 02:44
本文主要给大家介绍windows上安装Anaconda和python的教程详解,非常不错,具有参考借鉴价值,需要的朋友参考下
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点:
1、不开源,价格贵
2、软件容量大。一般3G以上,高版本甚至达5G以上。
3、只能做研究,不易转化成软件。
因此,我们这里使用Python这个脚本语言来进行数字图像处理。
要使用Python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是Linux系统,安装都是非常简单的。
要使用python进行各种开发和科学计算,还需要安装对应的包。这和matlab非常相似,只是matlab里面叫工具箱(toolbox),而python里面叫库或包。基于python脚本语言开发的数字图片处理包,其实很多,比如PIL,Pillow, OpenCV, scikit-image等。
对比这些包,PIL和Pillow只提供最基础的数字图像处理,功能有限;OpenCV实际上是一个c++库,只是提供了python接口,更新速度非常慢。到现在python都发展到了3.5版本,而opencv只支持到python 2.7版本;scikit-image是基于scipy的一款图像处理包,它将图片作为numpy数组进行处理,正好与matlab一样,因此,我们最终选择scikit-image进行数字图像处理。
一、需要的安装包
因为scikit-image是基于scipy进行运算的,因此安装numpy和scipy是肯定的。要进行图片的显示,还需要安装matplotlib包,综合起来,需要的包有:
Python >= 2.6
Numpy >= 1.6.1
Cython >= 0.21
Six >=1.4
SciPy >=0.9
Matplotlib >= 1.1.0
NetworkX >= 1.8
Pillow >= 1.7.8
dask[array] >= 0.5.0
比较,安装起来非常费事,尤其是scipy,在windows上基本安装不上。
但是不用怕,我们选择一款集成安装环境就行了,在此推荐Anaconda, 它把以上需要的包都集成在了一起,因此我们实际上从头到尾只需要安装Anaconda软件就行了,其它什么都不用装。
二、下载并安装 anaconda
先到www.continuum.io/downloads 下载anaconda, 现在的版本有python2.7版本和python3.5版本,下载好对应版本、对应系统的anaconda,它实际上是一个sh脚本文件,大约280M左右。
本系列以windows7+python3.5为例,因此我们下载如下图红框里的版本:
我们简单编写一个程序来测试一下安装是否成功,该程序用来打开一张图片并显示。首先准备一张图片,然后打开spyder,编写如下代码:
from skimage import io
img=io.imread('d:/dog.jpg')
io.imshow(img)
将其中的d:/dog.jpg 改成你的图片位置
然后点击上面工具栏里的绿色三角进行运行,最终显示
我们可以把这个程序保存起来,注意python脚本文件的后缀名为py.
四、skimage包的子模块
skimage包的全称是scikit-image SciKit (toolkit for SciPy) ,它对scipy.ndimage进行了扩展,提供了更多的图片处理功能。它是由python语言编写的,由scipy 社区开发和维护。skimage包由许多的子模块组成,各个子模块提供不同的功能。主要子模块列表如下:
子模块名称 | 主要实现功能 |
io | 读取、保存和显示图片或视频 |
data | 提供一些测试图片和样本数据 |
color | 颜色空间变换 |
filters | 图像增强、边缘检测、排序滤波器、自动阈值等 |
draw | 操作于numpy数组上的基本图形绘制,包括线条、矩形、圆和文本等 |
transform | 几何变换或其它变换,如旋转、拉伸和拉东变换等 |
morphology | 形态学操作,如开闭运算、骨架提取等 |
exposure | 图片强度调整,如亮度调整、直方图均衡等 |
feature | 特征检测与提取等 |
measure | 图像属性的测量,如相似性或等高线等 |
segmentation | 图像分割 |
restoration | 图像恢复 |
util | 通用函数 |
用到一些图片处理的操作函数时,需要导入对应的子模块,如果需要导入多个子模块,则用逗号隔开,如:
from skimage import io,data,color
以上就是详解关于windows上安装Anaconda和python的方法的详细内容,更多请关注 第一PHP社区 其它相关文章!