热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

nltk之snowball提取词干

nltk之snowball提取词干
机器学习中很重要的应用场景就是机器自动分类,而分类的关键是词干提取。所以我们要用到snowball。下面说一下snowball 提取词干的两种方法。

两种方法:

方法一:

>>> from nltk import SnowballStemmer
>>> SnowballStemmer.languages # See which languages are supported
('danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian',
'italian', 'norwegian', 'porter', 'portuguese", 'romanian',
'russian', 'spanish', 'swedish')
>>> stemmer = SnowballStemmer("german") # Choose a language
>>> stemmer.stem(u"Autobahnen") # Stem a word
u'autobahn'
但是当你知道你使用的语言场景的时候可以使用下面的方法直接调用:
方法二:
>>> ps = nltk.stem.snowball.PortugueseStemmer()
>>> ps.stem('celular')
u'celul'
>>> ps.stem('celular')
u'celul'

推荐阅读
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 《统计学习方法》第一章:基础概念与理论框架综述
    第一章介绍了统计学习方法的基础概念与理论框架。1.2节详细讨论了两种模型类型:一种直接输出具体的数值结果,另一种则输出概率分布。条件概率分布描述了在给定输入 \( x \) 的情况下,多个可能输出 \( y \) 的概率分布情况,而直接输出数值的模型则为每个输入 \( x \) 提供一个确定的输出值。这一部分还探讨了这些模型在实际应用中的重要性和应用场景。 ... [详细]
  • 2021年Java开发实战:当前时间戳转换方法详解与实用网址推荐
    在当前的就业市场中,金九银十过后,金三银四也即将到来。本文将分享一些实用的面试技巧和题目,特别是针对正在寻找新工作机会的Java开发者。作者在准备字节跳动的面试过程中积累了丰富的经验,并成功获得了Offer。文中详细介绍了如何将当前时间戳进行转换的方法,并推荐了一些实用的在线资源,帮助读者更好地应对技术面试。 ... [详细]
  • 布民于2015年加入阿里巴巴,目前担任阿里云高级专家和技术委员会成员,负责大规模流计算与图计算平台。他在微软亚洲研究院期间担任主管研究员,专注于大规模分布式计算的研究。本文将详细介绍阿里巴巴在大规模流式增量计算中的应用与实践,分享其在实时数据处理和分析方面的最新进展和技术挑战。 ... [详细]
  • 提升 Kubernetes 集群管理效率的七大专业工具
    Kubernetes 在云原生环境中的应用日益广泛,然而集群管理的复杂性也随之增加。为了提高管理效率,本文推荐了七款专业工具,这些工具不仅能够简化日常操作,还能提升系统的稳定性和安全性。从自动化部署到监控和故障排查,这些工具覆盖了集群管理的各个方面,帮助管理员更好地应对挑战。 ... [详细]
  • 支持向量机(SVM)在机器学习中的应用与学习心得
    支持向量机(SVM)是一种高效的二分类模型,其核心目标是通过寻找最优超平面来区分不同类别的数据点。在实际应用中,SVM能够有效地处理高维数据,并通过核技巧扩展到非线性分类问题。当新的数据点输入时,SVM会根据其相对于超平面的位置来判定其所属类别。训练过程中,SVM通过最大化间隔来确定最优超平面,从而提高模型的泛化能力。本文总结了SVM在机器学习中的应用及其学习心得,探讨了其在实际问题中的优势和局限性。 ... [详细]
  • 如何使用mysql_nd:Python连接MySQL数据库的优雅指南
    无论是进行机器学习、Web开发还是爬虫项目,数据库操作都是必不可少的一环。本文将详细介绍如何使用Python通过 `mysql_nd` 库与 MySQL 数据库进行高效连接和数据交互。内容涵盖以下几个方面: ... [详细]
  • a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析
    a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
  • 机器学习中的标准化缩放、最小-最大缩放及鲁棒缩放技术解析 ... [详细]
  • 妻子指导我深入学习机器算法 ... [详细]
author-avatar
渣渣
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有