热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

python实现批量监控网站详解及实例

本文给大家分享的是一个非常实用的,python实现多网站的可用性监控的脚本,并附上核心点解释,有相同需求的小伙伴可以参考下
本文给大家分享的是一个非常实用的,python实现多网站的可用性监控的脚本,并附上核心点解释,有相同需求的小伙伴可以参考下

">

最近又新上了一部分站点,随着站点的增多,管理复杂性也上来了,俗话说:人多了不好带,我发现站点多了也不好管,因为这些站点里有重要的也有不重要的,重要核心的站点当然就管理的多一些,像一些万年都不出一次问题的,慢慢就被自己都淡忘了,冷不丁那天出个问题,还的手忙脚乱的去紧急处理,所以规范的去管理这些站点是很有必要的,今天我们就做第一步,不管大站小站,先统一把监控做起来,先不说业务情况,最起码那个站点不能访问了,要第一时间报出来,别等着业务方给你反馈,就显得我们不够专业了,那接下来我们看看如果用python实现多网站的可用性监控,脚本如下:

#!/usr/bin/env python
 
 
import pickle, os, sys, logging
from httplib import HTTPConnection, socket
from smtplib import SMTP
 
def email_alert(message, status):
  fromaddr = 'xxx@163.com'
  toaddrs = 'xxxx@qq.com'
  
  server = SMTP('smtp.163.com:25')
  server.starttls()
  server.login('xxxxx', 'xxxx')
  server.sendmail(fromaddr, toaddrs, 'Subject: %s\r\n%s' % (status, message))
  server.quit()
 
def get_site_status(url):
  respOnse= get_response(url)
  try:
    if getattr(response, 'status') == 200:
      return 'up'
  except AttributeError:
    pass
  return 'down'
    
def get_response(url):
  try:
    cOnn= HTTPConnection(url)
    conn.request('HEAD', '/')
    return conn.getresponse()
  except socket.error:
    return None
  except:
    logging.error('Bad URL:', url)
    exit(1)
    
def get_headers(url):
  respOnse= get_response(url)
  try:
    return getattr(response, 'getheaders')()
  except AttributeError:
    return 'Headers unavailable'
 
def compare_site_status(prev_results):
  
  def is_status_changed(url):
    status = get_site_status(url)
    friendly_status = '%s is %s' % (url, status)
    print friendly_status
    if urlin prev_resultsand prev_results[url] != status:
      logging.warning(status)
      email_alert(str(get_headers(url)), friendly_status)
    prev_results[url] = status
 
  return is_status_changed
 
def is_internet_reachable():
  if get_site_status('www.baidu.com') == 'down' and get_site_status('www.sohu.com') == 'down':
    return False
  return True
  
def load_old_results(file_path):
  pickledata = {}
  if os.path.isfile(file_path):
    picklefile = open(file_path, 'rb')
    pickledata = pickle.load(picklefile)
    picklefile.close()
  return pickledata
  
def store_results(file_path, data):
  output = open(file_path, 'wb')
  pickle.dump(data, output)
  output.close()
  
def main(urls):
  logging.basicConfig(level=logging.WARNING, filename='checksites.log', 
      format='%(asctime)s %(levelname)s: %(message)s', 
      datefmt='%Y-%m-%d %H:%M:%S')
  
  pickle_file = 'data.pkl'
  pickledata = load_old_results(pickle_file)
  print pickledata
    
  if is_internet_reachable():
    status_checker = compare_site_status(pickledata)
    map(status_checker, urls)
  else:
    logging.error('Either the world ended or we are not connected to the net.')
    
  store_results(pickle_file, pickledata)
 
if __name__ == '__main__':
  main(sys.argv[1:])

脚本核心点解释:

1、getattr()是python的内置函数,接收一个对象,可以根据对象属性返回对象的值。

2、compare_site_status()函数是返回的是一个内部定义的函数。

3、map(),需要2个参数,一个是函数,一个是序列,功能就是将序列中的每个元素应用函数方法。

以上就是python实现批量监控网站详解及实例的详细内容,更多请关注 第一PHP社区 其它相关文章!


推荐阅读
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • LeetCode 540:有序数组中的唯一元素
    来源:力扣(LeetCode),链接:https://leetcode-cn.com/problems/single-element-in-a-sorted-array。题目要求在仅包含整数的有序数组中,找到唯一出现一次的元素,并确保算法的时间复杂度为 O(log n) 和空间复杂度为 O(1)。 ... [详细]
  • 本文介绍了拍摄高质量Vlog所需的设备,包括索尼A7 III相机、蔡司镜头、罗德麦克风、单反稳定器、苹果手机及其配件、灯光设备等。此外,还探讨了后期制作所需的软件工具,如剪辑、特效和调色软件。无论你是业余爱好者还是专业创作者,选择合适的设备至关重要。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 本文详细介绍了暂估入库的会计分录处理方法,包括账务处理的具体步骤和注意事项。 ... [详细]
  • PHP 编程疑难解析与知识点汇总
    本文详细解答了 PHP 编程中的常见问题,并提供了丰富的代码示例和解决方案,帮助开发者更好地理解和应用 PHP 知识。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 极大似然估计(MLE)及其3D可视化解析
    本文详细介绍了极大似然估计(Maximum Likelihood Estimation, MLE)的推导过程,并通过3D可视化展示其在概率密度函数中的应用。我们将探讨如何利用MLE来估计参数,以及它在实际问题中的重要性。 ... [详细]
  • 2023 ARM嵌入式系统全国技术巡讲旨在分享ARM公司在半导体知识产权(IP)领域的最新进展。作为全球领先的IP提供商,ARM在嵌入式处理器市场占据主导地位,其产品广泛应用于90%以上的嵌入式设备中。此次巡讲将邀请来自ARM、飞思卡尔以及华清远见教育集团的行业专家,共同探讨当前嵌入式系统的前沿技术和应用。 ... [详细]
  • 本文介绍如何解决在 IIS 环境下 PHP 页面无法找到的问题。主要步骤包括配置 Internet 信息服务管理器中的 ISAPI 扩展和 Active Server Pages 设置,确保 PHP 脚本能够正常运行。 ... [详细]
  • 探讨一个老旧 PHP MySQL 系统中,时间戳字段不定期出现异常值的问题及其可能原因。 ... [详细]
  • 国内BI工具迎战国际巨头Tableau,稳步崛起
    尽管商业智能(BI)工具在中国的普及程度尚不及国际市场,但近年来,随着本土企业的持续创新和市场推广,国内主流BI工具正逐渐崭露头角。面对国际品牌如Tableau的强大竞争,国内BI工具通过不断优化产品和技术,赢得了越来越多用户的认可。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 郑州大学在211高校中的地位与排名解析
    本文将详细解读郑州大学作为一所位于河南省的211和双一流B类高校,在全国211高校中的地位与排名,帮助高三学生更好地了解这所知名学府的实力与发展前景。 ... [详细]
author-avatar
纳尼唐_199
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有